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Detector Concept

= (Gaseous ionizing radiation detectors with  seiecric iyer

display electrode \

closed cell architecture

= Motivated by flat panel pixelated AC
television screens
= Long lasting
= Hermetically sealed
= Lightweight

o Established industrial fabrication
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Plasma display panel schematic




Detector Design Progression

= Modified PDP -> 1st Gen Microcavity -> 2nd Gen: pHexcavity

Modified DC 3D pixel
commercial layout-

PDP layout-
1st generation microcavity pHexcavity

detector
= Microcavity -> first independently fabricated detector from Macor & alumina m

= Each cell acts as an independent detector
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Anode
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Panel
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Plasma discharge initiated by

incident ionizing radiation

Self quenching

Design objectives:

[m]

Thin materials (low mass device)
Rates exceeding 100 KHz/cm”2
O(ns) time resolution

High packing fraction/detection
over large areas

< 300 micron spatial resolution
No amplification

Hermetically sealed, no gas flow

system



1st Generation Microcavity C

P Sense Lines
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= High voltage applied to cavity body through metal via ] '====
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- Orthogonal RO and HV lines EnEEEEEEE
EEEE

= 63 far apart, individually sealed pixels u E=
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Electronics and Read Out .

HV

Schematic of detector
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Each pixel has < 1pF EEE
capacitance

High valued quench
resistors (200 MQ - 1 GQ)
RO to TDC or scalar

Surface mount
quench resistors on
each cell




Detector Operational Principles

= |ndividual cells biased for gas discharge when ion pair is created
by incident ionizing radiation

= Metallized cell walls act as cathode, anode positioned at top
center

= Operated in Geiger region of gaseous detectors

= Three-component Penning gas mixture fill

= Neon based, atmospheric pressure or below

Individually quenched by external high-valued resistor
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First Data and Results

= Typical pulse characteristics:
= Pulse shape uniform
across panel
= Pulse width at half max: 3
ns
= Rise time ~3 ns
= Pulse height: 1 V
= Operating voltage is gas
dependent
= Varies between between
900 V and 2000 V

= Volt-level pulses o
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Rate vs HV
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pixels on 10 readout lines
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= Measured rates from each isolated cell are similar EEE
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= < 1Hz/RO line spontaneous discharge rate (background) | HEEE
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» Rate increase flattens around ~1500 V (approaching maximum efficiency) o ===
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Microcavity E-Field Simulation
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= E-field peaks at edges of anode
(microcavity PPD simulated in
COMSOL)

= E-field peaks at ~9.7 x 1076
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Microcavity E-Field Simulation & Data

+ 600 um -> edges of anode
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Rate vs position for a single pixel
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Position Scans

= Robotic arm increments collimated Sr-90 source over detector

= Rate measured as a function of collimator position

= Panel operated at 1450 V
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= Each pixel operating
independently

AES R
ER2ZER.

1844
S EEER

-10000 10000

14 - Alexis Mulski = University of Michigan = pHex Detectors X [um]

220

=180
—160
—1140

\
ﬂmo

-~ 100




2nd Generation- pHexcavity
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Same HV/RO system as 1st gen
2 mm regular hexagonal cavities
Higher packing fraction/spatial
coverage

> £, = (R /R ..)=70%
Circular anodes

Thin (400 micron) cover plate

= Glass or Macor



uHexcavity Position Scans
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4000

Sr-90 w/ 1 mm
collimator
Pixels respond
when irradiated,
quiet otherwise
Peaks due to
higher flux

No discharge

spreading



uHexcavity Position Scans o

Position scan over
entire panel
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nHexcavity Efficiency with Cosmic Ray Muons

- Setup: __Top scintillator

= pHexcavity detector placed between
two scintillator paddles

= 125 instrumented pixels

= Measured three-fold (scintillator and

detector) and two-fold (scintillator)

coincidences at different voltages

= Experimental setup recreated in Geant4
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Efficiency (€) with Cosmic Ray Muons
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Efficiency with Cosmic Ray Muons
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Summary/Next Generation

= Presented a hermetically sealed gaseous ionizing radiation detector

= Qperated for months on single fill

= Each cell responds as an individual detector

= < 3 ns timing resolution

= Spatial coverage increased from 18% to 70% with pHexcavity design

= Relative efficiency is unity for pHexcavity with cosmic ray muons &

3-component gas fill (allowing for ion-pair formation) _a. A
= Next generation objectives: / \

> 100 KHz/cm?

= |ncrease pixel density
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Thank you!
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Plasma D

= Inert gas mixture held in array of cells
between glass plates
= |ndividually sealed cells
= Anti-parallel rows of address and
transparent display electrodes in
dielectric material + MgO coating
= Plasma discharge sustained when cell

biased above critical potential
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iIsplay Panel Discharge

Dis play electrodes

Dielectric layer [inside the dielectric layer)

Front plate glass

Aschematic matrix electrode
configuration in an AC PDP

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Plasma-d |
isplay-composition.svg/440px-Plasma-display-composition.svg.png

Dielectric layer .

Magnesium axide coating . . . . .

Address dectrode
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Efficiency with Cosmic Ray Muons

= Efficiency for throughgoing muons

o

[u}

= Path length distribution through pixels:

25

Path length through pixel: 1 mm

lon-pairs created per path length with chosen gas fill: 14.9
cm/atm

Probability to create at least 1 ion pair for a straight track:
1 - e”-1.49) =76% -> Absolute efficiency

Path Length Distribution in Detector Cavities
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Afterpulse Measurements

Prapartion af Intervals with Melastable After-pulses for 1 Gohm lines (5.0-10.0 ms intervals)
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