FASER: ForwArd Search ExpeRiment at the LHC

work with Jonathan Feng, Iftah Galon and Sebastian Trojanowski arXiv: 1708.xxxxx

Felix Kling

DPF 2017 August 3rd 2017

Introduction

forward region

- mostly used for SM measurement LHCf, TOTEM, ALFA, CASTOR
- enormous event rates: $\sigma_{inel} \sim 75 \text{ mb}$ ($\sim 10^{17}$ inelastic pp collisions)
- -> even extremely weakly-coupled particles may be produced sufficiently
- most decay products have small pT $\sim \Lambda_{QCD}$
- \rightarrow energetic particles highly collimated $\theta \sim \Lambda_{QCD}/E \sim \text{mrad}$ for $E \sim \text{TeV}$
- we propose small ($\sim 1~{
 m m}^3$) inexpensive detector a few 100 m downstream
- FASER: ForwArd Search ExpeRiment at the LHC

Outline

LHC Infrastructure - where can we place the experiment

Dark Photons - a physics example

Detector Considerations - what detector design do we need

Backgrounds - and why we do not worry about them

Expected Reach - how do we perform

Summary and Outlook

Felix Kling

LHC Infrastructure

- **IP** particles produced at ATLAS/CMS Interaction Point
- TAS Front Quadrupole Absorbers absorbs particles with $\theta > 0.85~\mathrm{mrad}$
 - **DI** inner beam separation dipole magnet
 - \rightarrow charged particles (μ, π^{\pm}) get deflected
- $\mathbf{TAN}\,$ forward n,γ absorbed by Target Neutral Absorbers
 - Arc beam starts to curve at $L=~272\mathrm{m}$

Detector Locations
off-axis: L=100mon-axis: L=400minner radius
 $R_{in} = 10 \text{ cm}$
outer radius
 $R_{out} = 20 \text{ cm}$ A = 10 m
outer radius
 $R_{out} = 20 \text{ cm}$ Felix KlingFASER: ForwArd Search ExpeRiment at the LHCO UCIRVINE

A Physics Example - Dark Photons

Dark Photons

- (broken) dark U(I) gauge group mixing with the SM photon

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 + \sum \bar{f}(i \partial - \epsilon e q_f A') f$$

- FASER aims to probe $m_{A'} \sim 10-500 {
m ~MeV}$ and $\epsilon \sim 10^{-6}-10^{-4}$

Production Modes

- meson decays: mainly $\pi^0 \to \gamma A'$, $\eta \to \gamma A'$
- proton Bremsstrahlung: $pp \rightarrow pA'X$ Fermi-Weizsäcker-Williams approximation
- (direct production): $q\bar{q} \rightarrow gA'$, $qg \rightarrow qA'$ PDFs at low Q^2 and low x highly uncertain

Meson Production

- use forward tools/models EPOS-LHC, SIBYLL 2.3, QGSJETII-04
- boosted mesons highly collimated $p \cdot \theta = p_T \sim \Lambda_{QCD}$
- large rates at $L = 300 \text{ fb}^{-1}$

Felix Kling

A Physics Example - Dark Photons

Meson Decay to Dark Photons

- branching fractions: $BR(\pi^0 \to \gamma A') = 2\epsilon^2 \left(1 \frac{m_{A'}^2}{m_{\pi}^2}\right)^3$ even small $\epsilon \sim 10^{-5}$ large sizable rate

Dark Photon Decay

- A' is long lived: $\Gamma_{A'} = \epsilon^2 e^2 m_{A'}^2 / (12\pi \operatorname{BR}(A' \to ee))$

- decay length $\bar{d} \approx 80 \text{ m } B_e \left[\frac{10^{-5}}{\epsilon} \right]^2 \left[\frac{E_{A'}}{\text{TeV}} \right] \left[\frac{100 \text{ MeV}}{m_{A'}} \right]^2 p_{A'} \text{ [GeV]}$ $10^4 \left[\frac{\pi^0 \rightarrow \gamma A'}{m_{A'}} \right]$ \overline{d} [m] EPOS-LHC 10³ *m*_{A'}=100 MeV $\epsilon = 10^{-5}$ 10² 10³ 10 10² -10⁵ 10 10^{4} 10^{-1} $10^{-1} \begin{array}{c} -10^{3} \\ -10^{2} \\ 10^{-2} \\ 10^{-5} \\ 10^{-4} \\ 10^{-3} \\ 10^{-2} \\ 10^{-2} \\ 10^{-1} \end{array}$ 10⁻² 10⁻³ $\theta_{A'}$ FASER: ForwArd Search ExpeRiment at the LHC IRVINE Felix Kling

A Physics Example - Dark Photons

Meson Decay to Dark Photons

- branching fractions: $BR(\pi^0 \to \gamma A') = 2\epsilon^2 \left(1 \frac{m_{A'}^2}{m_{\pi}^2}\right)^3$ even small $\epsilon \sim 10^{-5}$ large sizable rate

Dark Photon Decay

- A' is long lived: $\Gamma_{A'} = \epsilon^2 e^2 m_{A'}^2 / (12\pi \operatorname{BR}(A' \to ee))$
- decay length $\bar{d} \approx 80 \text{m } B_e \left[\frac{10^{-5}}{\epsilon} \right]^2 \left[\frac{E_{A'}}{\text{TeV}} \right] \left[\frac{100 \text{ MeV}}{m_{A'}} \right]^2 p_{A'} \text{ [GeV]}$
- probability to decay inside detector:

$$\mathcal{P} = e^{-L/\bar{d}} \left[e^{\Delta/\bar{d}} - 1 \right] \Theta \left(L\theta_{A'} - R \right)$$

- only A' with E~TeV will reach detector
- A' very forward $\theta_{A'} < 1 \text{ mrad}$ \rightarrow small detector radius

Felix Kling

Detector Considerations

Detector Position and Size

- ideally as close as possible to IP
- small detector radius R~20cm sufficient
- off-axis design benefits from low distance, but suffers from reduced angular coverage

Kinematic Features of Signal

- two oppositely charged energetic tracks: E>500 GeV
- vertex inside detector volume
- combined momentum points towards IP

Proposed Detector Apparatus

- tracking based technology
- small opening angle $\theta_{ee} \sim m_{A'}/E_{A'} \sim 10 \ \mu \mathrm{rad}$
- magnetic field required to obtain sizable splitting

$$h_B = 3 \text{ mm} \left[\frac{1 \text{ TeV}}{E}\right] \left[\frac{\ell}{10 \text{ m}}\right]^2 \left[\frac{B}{0.1 \text{ T}}\right]$$

-> can be obtained by conventional magnets

Felix Kling

Backgrounds

Signal

- 2 simultaneous high energy tracks
- tracks start inside detector

- combined momentum points towards IP
- both tracks have similar energy

Tracks starting outside detector

- particles from IP
 - deflected/absorbed by DI/TAS/TAN
- cosmic/beam induced high energy μ s
- \rightarrow expected rate: 10^{-4} Hz/cm² ATLAS: 1203.0223
- \rightarrow < 10^{-2} simultaneous tracks/year

Tracks starting inside detector

- mainly u_{μ} from π^{\pm} , but also heavy mesons 1110.197
- $\nu N \rightarrow \mu^{\pm} X$:~8 events with E>100GeV
- --> simultaneous CC interaction highly unlikely
- $\nu N \rightarrow \mu^{\pm} \pi^{\mp} X : \sim 10^{-1}$ events
- \rightarrow pion usually soft $E_{\pi}/E_{\mu} \lesssim 0.05$

analysis is basically BG free

kinematic features reduce these BG possible scintillating layer for veto

Felix Kling

Expected Reach

Signal Rate

- signal acceptance almost 100%
- includes $A' \to ee, \mu\mu, \pi^{\pm}\pi^{\mp}$ modes
- low E: limited production rate
- high ε: A' decay before detector
- high mass: improvement via

direct production?

Felix Kling

Expected Reach

Signal Rate

- signal acceptance almost 100%
- includes $A' \rightarrow ee, \mu\mu, \pi^{\pm}\pi^{\mp}$ modes
- low E: limited production rate
- high ε: A' decay before detector
- high mass: improvement via direct production?

Reach

- almost background free
- reach similar to SeaQuest, SHiP

 $(m_{A'}\epsilon)^2|_{\rm max} \propto L/E_{A'}^{\rm Beam}$

Summary and Outlook

Forward Physics

- large event rates in forward direction

Intersection

- search for light extremely weakly coupled particles

FASER

- small size $\sim 1 \text{ m}^3$ detector
- placed few 100 m downstream of the ATLAS/CMS IP
- equipped with tracking system + magnetic field
- operates parasitically

Physics Example: Dark Photons

- A' \rightarrow 2 energetic charged tracks, $E \sim \text{TeV}$
- basically background free
- reach: $m_{A'} \sim 10 500$ MeV, $\epsilon \sim 10^{-6} 10^{-4}$

Outlook

- explore more physics opportunities/models

We look forward to feedback from experimentalists!

Felix Kling

Backup: Forward Physics Models

Backup: Signal Contributions

Backup: on-axis vs off-axis

Felix Kling

FASER: ForwArd Search ExpeRiment at the LHC

VINE