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The Jet Image J. Cogan et al. 1407.5675 4

Jet Image: A two-dimensional fixed representation of the
radiation pattern inside a jet
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jet image ..and nothing like a
‘natural’ image!



Why images”
o : -

Can directly visualize physics

3 and we can benefit from the
» extensive image processing literature

I.

§ -J
singlet -» qq’

octet - QQ

[

there is information encoded in the
physical distance between pixels
(will mention other fixed representations later) o




Why |ets” 6

A jet is defined by a clustering algorithm (=unsupervised learning)

BUT these “clusters” also have physical meaning
e.g. can be calculated in perturbation theory

/ /\ — a great testing ground

to bridge state-of-the-art
0.8 | q> |
8 3 (I)2 cID]_

ML techniques with
| physically meaningful/
3 ; interpretable algorithms




Pre-processing and Special Relativity 7

Pythia 8, W'— WZ, \s=13 TeV

Pre-processing is an important
aspect of image recognition

However, some steps can
damage the physics information
content of a jet image

| won'’t discuss this in detail here, but
| bring it up so you are aware of it!
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Pre-processing: Rotations 8




Pre-processing: Rotations 9

particle 1 with pt = 1

n=+1,
K If we rotate the jet
o by /2, then the new
o’ jet mass is ~2.4

-
------

particle 2 with pt = 1



Modern Deep NN's for Classification
L. de Oliviera, M. Kagan, L. Mackey, BPN, A. Schwartzman 1511.05190

Convolutions Convolved Feature Layers

Max-Pooling

W= Wz event P. Baldi et al. 1603.09349 (W-tagging)
J. Barnard et al. 1609.00607 (W-tagging)
P. Komiske et al. 1612.01551 (g/g-tagging)

Subsequent (
G. Kasieczka et al. 1701.08784 (top-tagging)

developments:



Modern Deep NN's for Classification
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Signal Efficiency

L. de Oliviera,
M. Kagan, L.
Mackey, BPN,
A. Schwartzman
1511.05190

..by how much

and what they

are learning is
active R&D!



DNN Output

Learning about Learning

Jet images afford a lot of natural visualization
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as a community, we have also developed many techniques
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More detail in my DS@HEP15 talk
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https://indico.cern.ch/event/395374/session/6/contribution/50/attachments/1186157/1720276/SLAC_StanfordHEPML.pdf

Modern Deep NN's for Regression
P. Komiske, E. Metodiev, BPN, M. Schwartz 1707.08600

Every pp collision comes with
O(10-100) other collisions we !ﬁ:IE-F!TI\ﬁNST

don’t care about (plleup) HL-LHC t event in ATLAS ITK

at <p>=200

Pileup is a strange sort of noise
- because we can measure ~2/3 of
| it (charged pileup)
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https://indico.cern.ch/event/579660/contributions/2575091/attachments/1495728/2327132/BOOST_PUMML_EMM.pdf

Modern Deep NN's for Regression
P. Komiske, E. Metodiev, BPN, M. Schwartz 1707.08600

Leading vertex neutral

Inputs to NN N ~ d
10 filters x2

See BOOST17 talk


https://indico.cern.ch/event/579660/contributions/2575091/attachments/1495728/2327132/BOOST_PUMML_EMM.pdf

Modern Deep NN's for Regression
P. Komiske, E. Metodiev, BPN, M. Schwartz 1707.08600

Cross-section (normalized)

"Pileup Mitigation with
Machine Learning”
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See BOOST17 talk



https://indico.cern.ch/event/579660/contributions/2575091/attachments/1495728/2327132/BOOST_PUMML_EMM.pdf

And now: Modern Deep NN's for Generation 16

M. Paganini, L. de Oliveira, and BPN 1705.05927, 1705.02355

Generative Adversarial Networks (GAN): :
A two-network game where one maps noise to images
and one classifies images as fake or real.

Average generated signal image
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When D is maximally ¢ -
confused, G will be &=
a good generator -

*_ Physics-basea
simulator




Locally Aware GAN (LAGAN)
M. Paganini, L. de Oliveira, and BPN 1705.05927
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Jnlike "natural images’, we
nave physically meaningful
1D manifolds (here, jet mass)
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+ More Layers for Generation

What about multiple layers with
non-uniform granularity and a
causal relationship?

Not jet iImages per se, 9
but the technology Is 3 O I
more general than jets! ..
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Average Images 19
Geant4 M. Paganini, L. de Oliveira, and BPN 1705.02355
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Timing

M. Paganini, L. de Oliveira, and BPN 1705.02355

Batch Size | milliseconds/shower

Generation Method | Hardware
GEANT4 CPU N/A
T
cpy |9
128
1024
CALOGAN 7
4
GPU 128
512
1024

5.11
2.19
2.03

3.68

0.021
0.014
0.012




Conclusions

(Jet) image-based NN classification, [~ —————="""777"]
regression, and generation are
powerful tools for fully exploitingthe | | | .. .=
physics program at the LHC SRR MHE el e
70000 1 1GeVet
60000 [ 1 25GeVe”™
1 50GevVet
50000 100 GeV e ™
150 GeV e *
400001
30000 Beyond our _
20000 training sample! The key to robustness is to
AW study what is being learned;
HO0R0 | this may even help us to learn
01 25 50 100 150 something new!

Eror (GEV)



Workshop Advertisement

Machine Learning for Jet Physics

11-13 December 2017 .
Lawrence Berkeley National Laboratory | | ﬂ k

US/Pacific timezone

Overview here has been a r iroe of interest ; o and anolving adv: achine learn
There has been a recent surge of interest in developing and applying advanced machine learning

Scientific Programme techniques in HEP, and jet physics is a domain at the forefront of the excitement. The goal of this
workshop is to gather experts and new-commers to discuss progress, new ideas, and common
challenges. The workshop is open to the community; we invite contributions and will try to

View my Abstracts accommodate everyone within reason.

Submit Abstract

Call for Abstracts

Timetable
O Starts 11 Dec 2017 08:00 Lawrence Berkeley National Laboratory
Author List Ends 13 Dec 2017 18:00

My Conference

K of Ab Nachman, Benjamin , - 7
Book of Abstracts Dr. Cohen, Timothy No material yet £

. . Dolan, Matt
Registration Cranmer, Kyle
Modify my Registration

Participant List There is no fee for attending the workshop. Coffee and light refreshments will be provided during breaks but
meals and lodging are the responsibility of the attendant.

There are many hotels in the Berkeley area, including limited availability at the LBNL guesthouse (5 min walk
from the workshop, $140/night). A complementary shuttle runs every 10 min from downtown Berkeley up to the
lab. For lunches, the most convenient option will be to eat in the LBNL cafeteria (5 min walk from workshop,
~108).

Related workshops:

DS@HEP: https://indico.fnal.gov/conferenceDisplay.py?ovw=True&amp;amp;amp;confld=13497
BOOST: https://indico.cern.ch/event/579660/


https://indico.physics.lbl.gov/indico/event/546/manage/general/




GAN Code and documentation

All of our training samples are public as is our
generation, training, and plotting code:

https://github.com/hep-Ibdl

you can find more documentation about the
LAGAN and CaloGAN on the arXiv:

1705.02355 1701.05927


http://arxiv.org/abs/1705.02355
http://arxiv.org/abs/1701.05927
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Locally Connected Layers

Due to the structure of the problem, Classification
we do not have translation invariance. studies found fully
stride connected networks

outperformed CNNs
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— —— g +—
D G—
— -
. -
-

However, convolutional-like architectures
are still useful to e.g. reduce parameters




Locally Connected Layers 27

stride Locally connected layers
r A use filters on small patches

(CNN is then a special

/ £ \ﬁwth weight sharing)




Calorimeter Simulation

Geant4, Pb Absorber, IAr Gap, 10 GeV e

T 0 =
E ()
200 =
C
§ =
3 150 g
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Depth from Calorimeter Center [mm]

A single event may have O(1093)
of particles showering in the
calorimeter - too cumbersome
to do all at once (now)

We exploit factorization of
energy depositions

We take as our model a 3-

layer LAr calorimeter,
nspired by the ATLAS

barrel EM calorimeter

150

1 direction [mm]
N
o
o

100

50

-50

-100

-150

-200

Geant4, Pb Absorber, IAr Gap, 10 GeV e

' -
-------- 0

-200 -150 -100 -50 0 50 100 150 200
Depth from Calorimeter Center [mm]




Generator Network for CaloGAN

One ‘jet image’ One network per particle type;
per calo layer iInput particle energy

~\<<UTPUTS
! Wull

INPUTS /
4 |particle
1 | energy +—rescale —

V E

Linear
Combination

] =7l
| IV - — > > ” i
| - Linear
Resize Combination

Scalar
multiplication

latent

1024 space
V4

Wi2
Wy

\_

?

use layer i as RelLU to

input to layer i+1 encourage
sparsity



Discriminator Network for CaloGAN

OUTPUTS

fake
VS.
real

reco.
energy

Concatenation

help avoid
‘mode collapse’
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“‘Overtraining”

Nearest GEANT neighbour
to each GAN image
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A key challenge in training GANS is the diversity of generatec
images. This does not seem to be a problem for CaloGAN.
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Energy per layer 30

=T Pions deposit much less energy
101 vy GEANT [y GAN . .
100 m* GEANT n+ GAN lq the fII'SJ[ |ayers’ |eave the
101 [ M e calorimeter with significant energy
10_2‘ et GEANT [ et GAN
107 . =
10~ 10-1
10° 10 Jrlmr“-w\
1072 1071 10° 10% 1073/ W
Eo (GeV) '
o o =
107> r\*mﬁ-‘%\ m* GEANT m* GAN
100<
)
1071 10° 101 102 107
E, (GeV) ~
1072
10-3
1074
N.B. can always add these (and 107

102 10"t 10° 10! 107

others) explicitly to the training E, (GeV)



Depth of the shower

10-81

10~3

107

et GEANT
v GEANT
mT GEANT
[ e GAN
—1 vy GAN
mt GAN

—

10t 102  10° 104  10°
Depth-weighted total energy /4




Lateral spread

100
10—L
10—2
10—3
10—4
10—5

10—6

These moments and others are useful
for classification; we have also tested "
this as a metric (NN on 3D images) 10° 10!

et GEANT [ e* GAN

y GEANT [y GAN
n+ GEANT n* GAN
10° 10! 107

The much larger variation in the pion
showers is a challenge for the network.

109 e+ GEANT [ e* GAN
y GEANT [y GAN
n* GEANT m+ GAN
10—L
10—2
10—&
109, et GEANT [ e* GAN
104 vy GEANT [y GAN
10-1 n+ GEANT nm+ GAN
10—5

1072; 7 |
N0 N1 N2 1
10 10 10 10-3!
(04] _
104 Hlnr




Shower Energy

7 1l

0000 1GeVe™

60000 25 GeV e +
50 GeV e™

50000 100 GeV et
150 GeV e ™

40000

30000

20000

10000

N1 L A
1 25 50 100 150
Eror (GeV) X Beyond our

training sample!



Where 10 next

Add angle in addition to energy;
hadronic calorimeter

Non-uniform geometry
as a function of n

Integration within experiments (ATLAS
and possibly others?) and collaboration
with other efforts (e.g. GeantV)




