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Perturbative QCD

§ Perturbative QCD is very successful in describing and interpreting 
experimental data at e+e-, e-p, and p-p collisions
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QCD factorization at leading-twist

§ Such a success relies on QCD factorization theorems at leading-
twist, which is based on “single scattering picture”
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Proton to nucleus

§ What do we expect when a proton is replaced by a heavy nucleus 
in high energy collisions?
§ Nuclear binding energy is about 8 MeV/nucleon << typical energy exchange in 

hard collisions

§ Should one expect a simple sum/superposition of individual nucleons?

§ However, large and non-trivial nuclear dependence have been 
observed in almost all processes involving nuclear targets

4

RF2 =
1
AF

A
2 (x,Q2

1
2F

D
2 (x,Q2)

6= 1



Nuclear broadening: nuclear size dependence

§ Nuclear broadening of average transverse momentum of 
produced particles in p+A vs p+p
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Single vs multiple scattering

§ Single scattering is localized in space and cannot have size 
dependence, it is “multiple scattering” that plays an important role

§ Generic structure of cross section for particle production
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Generalized QCD factorization

§ Framework to compute the contributions of multiple scattering
§ A generalized QCD factorization framework was developed by Qiu and Sterman

in 1990s

§ Over the years, we have improved for fast/efficient implementation and for 
generic kinematic regions

§ Example diagrams
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Incoherent vs coherent multiple scattering

§ The nature of the multiple scattering (incoherent vs coherent) 
depends on the probing length of the probe
§ At small-x region (forward region): 

coherent ➝ suppression

§ At large-x region (backward region): 

incoherent ➝ enhancement
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Heavy meson production in backward region

§ Both initial-state and final-state double scattering contributions
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Dihadron correlation in forward region

§ In p+p collisions, at LO, two hadrons 
are produced back-to-back in 
transverse plane

§ However, in p+A/d+Au collisions, 
initial-state and final-state multiple 
scattering will lead to imbalance

§ Nuclear broadening of dihadron
imbalance
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Dihadron suppression in forward region

§ Combine suppression and nuclear broadening, one can predict 
the azimuthal decorrelation
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Explore multiple scattering in more channels

§ Transverse momentum broadening also happens in other 
processes such as SIDIS, DY, J/𝜓 production
§ Comparing the theoretical computations and experimental data can validate 

our theoretical framework
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Works pretty well

§ Description of the data using single set of correlation functions
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Going beyond: radiative corrections

§ It would be highly desirable to carry out the multiple scattering 
computations to next-to-leading order (NLO)
§ Verify the factorization theorem at NLO and at next-to-leading power (twist-4)

§ Derive the evolution equations for the relevant correlation functions

§ Reduce the theoretical uncertainties

§ We recently took this step, performed the NLO computations for 
SIDIS and DY processes
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Double scattering in SIDIS at NLO

§ Virtual diagrams (7)

§ Real diagrams (69)
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SIDIS: TMB at NLO

§ Logic: make sense of all sorts of divergence
§ UV divergence:                     taken care by renormalization

§ Soft divergence:                   cancel between real+virtual

§ Collinear divergence:                long-distance physics, part of PDFs/FFs, leads 
to DGLAP evolution of these functions
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New evolution equation

§ Evolution equation for quark-gluon correlation function

§ Perform the same calculation for DY production in p+A collisions
§ Same renormalized result at NLO for quark-gluon correlation function, 

indicating the universality of the function, independent of the hard process 
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A full NLO calculation

§ Factorization
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Though quite involved, (1) the evolution equation can be 
derived; at the same time, (2) multiple scattering hard 
part (short-distance physics) can be rigorously computed 



Summary

§ Multiple scattering in high energy nuclear collisions are very 
important sources of nuclear dependence

§ The effects of multiple scattering can be systematically calculated 
in a high-twist formalism

§ QCD NLO computations for double scattering have been 
performed for the first time for SIDIS and DY processes 
§ Looking forward to the precision analysis of p+A data in the future
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