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R The DUNE Experiment

* Planned precision long baseline neutrino oscillation
experiment.

* Designed to provide definitive answers on CP violation in

the neutrino sector and the mass hierarchy.

 ND design still ongoing, but the FD will be a several KT
underground liquid argon TPC.

Sanford Underground
Research Facility

Fermilab
800 miles ‘;;T'” . o=
<300 Kilometer™=! o ooozee® ‘
y-—— Y:‘;.-..V-v'i:iv‘:tii'f?iii;‘l%‘~-'-' -
Py e oo NEUTRINO
PO e e PRODUCTION

PARTICLE |
DETECTOR PROTON

L UNDERGROUND

PARTICLE DETECTOR ACCELERATOR
L EXISTING

LABS
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ﬁWhy Deep Neural Networks”

 Measuring neutrino oscillations is all about measuring how
neutrinos change between ditferent lepton flavor states as
a function of distance traveled and neutrino energy.

L
N oo N b B S
P(v, — v,) = 1— sin“(26043) sin ( I
v,+V, Quasielastic CC Events
2510 L 1.4
> | 190 POTVRUI - without Osclllations | 8 T F monte Carlo
() [ 18x10° POTV Run | i 1 © 1.2C
< 200} 14 kton Fiducial / ] = ;
8 ' ' 1 § T Ay '
& 190F i £ 0.8- ESln (2923i+++++++
© 100} R Sost 4t
- with oscillatigns © - . +
O _ =04 41 +
>  BOf / s O B =
L 0.2 v+
| - 02  %N,.2
0 ai i
0 2 4 6 8 10
Energy (GeV) Visible energy (GeV)
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ﬁWhy Deep Neural Networks”

 Measuring neutrino oscillations is all about measuring how
neutrinos change between ditferent lepton flavor states as
a function of distance traveled and neutrmo energy.

AmZ2, L
P (VM 4 ye) 2 ,——Patme—z( 32 +5cp) ¢

/ 010 ~AtM T Solellr + Ilnterfe1|"ence
2 Tl -
o Amg,; L :,’& :

U

. : :
P.ir, = sin? 055 sin® 20,5 sin

0.02 |

From S. Parke, “Neutrino

4 F 0.08 [

L=810 km, 6=3m/2
sin®6,3=0.01 —
1 U,V

NH: solid
|
! A [H: dashed
\
)

Oscillation Phenomenology” 0.00
in Neutrino Oscillations: 0.2

(\ A|exaﬂde|’ RadOViC Present Status and Future
Plans
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ﬁWhy Deep Neural Networks”

* Any oscillation analysis can benefit from precise
identification of the interaction in two ways:
e Estimating the lepton tlavor of the incoming neutrino.
o Correctly identitying the type of neutrino interaction, to
better estimate the neutrino energy, aka is it a quasi
elastic event or a resonance event?

B <

Quasi-Elastic Resonance

(\ Alexander Radovic Deep Learning at DUNE 3



ﬁWhy Deep Neural Networks”

* Liquid argon detectors are also the perfect domain:
* Large ~unitorm volumes where spatially invariant
response is a benetit.

One, main, detector system.
How Does a LAFTPC Work " W'r_,e i'ane

Bo Yu (BNL) Liquid Argon TPC

Cathode

Plane
A — )
fime

Edrift~500V/cm —

(\ Alexander Radovic Deep Learning at DUNE A



ﬁWhy Deep Neural Networks”

* Liquid argon detectors are also the perfect domain:
* Large ~unitorm volumes where spatially invariant
response is a benetit.
* One, main, detector system.

Run 3493 Event 41075, October 23*¢, 2015

(\ Alexander Radovic Deep Learning at DUNE A



ﬁ()onvo\utiona\ Neural Networks

Instead of training a weight for every input pixel, try learning
welights that describe kernel operations, convolving that kernel
across the entire image to exaggerate useful features.

Inspired by research showing that cells in the visual cortex are
only responsive to small portions of the visual field.

( 195 + 196 + 193
X -1 X -1 X -1

+ 152 + 164 + 199

X -1 X 8 X -1

+ 162 + 155  +| 169

X -1 X -1 X -1

outline

http://setosa.io/ev/image-kernels/
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ﬁ()onvo\utiona\ Neural Networks

Instead of training a weight for every input pixel, try learning
welights that describe kernel operations, convolving that kernel
across the entire image to exaggerate useful features.

Inspired by research showing that cells in the visual cortex are
only responsive to small portions of the visual field.

Raw data Low-level features Mid-level features High-level features

ol DL T

\ .
G o T e

CRED Y W R
Temb B Ul =n En
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https://developer.nvidia.com/deep-learning-courses

Deep Learning
for Event [dentitication

(\ Alexander Radovic Deep Learning at DUNE
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Time

Our Input

Each “pixel” is the integrated ADC response in that time/
space slice. These maps are chosen to be 500 wires long
and 1.2ms wide (split into 500 time chunks).
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ﬁf The Training Sample

1.2M events, only preselection requiring 100 hits split across
any number of planes.

Labels are from GENIE truth, neutrino vs. antineutrino is
ignored.

No oscillation information, just the raw input distributions.
80% for training anmcj 20% for testing.
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Our Architecture

Based on the NOVA CNN, named CVN. Small edits to better
sult a larger input image and three distinct views.

The architecture
attempts to =

convl/11x11_s4_z

conv1/11x11_s4_y
convl/relu_11x11_z

convi/relu_11x11_y

slice
conv1/relu_11x11_x

pool1/3x3_s2_y pool1/3x3_s2_z

categorize events

pool1/norm1_x

conv2/3x3_reduce_z

conv2/3x3_reduce_x conv2/3x3_reduce_y
a S V | I Ve V l conv2/relu_3x3_reduce_x conv2/relu_3x3_reduce_y conv2/relu_3x3_reduce_z

conv2/3x3a_z

conv2/3x3a_x conv2/3x3a_y

conv2/relu_3x3a_x conv2/relu_3x3a_y conv2/relu_3x3a_:

Q | | : | : ; D | : ; conv2/3x3_x
, , , conv2/relu_3x3_x

N conv2/norm2_x conv2/norm2_y conv2/norm2_z
C n po012/3x3_s2_x pool2/3x3_s2_y pool2/3x3_s2_z

inception_3a/5x5_reduce_z

conv2/3x3_y conv2/3x3_z

conv2/relu_3x3_y conv2/relu_3x3_z

inception_3a/3x3_reduce_y inception_3a/5x5_reduce_y inception_3a/3x3_reduce_z

inception_3a/3x3_reduce_x inception_3a/5x5_reduce_x
inception_3a/pool_y inception_3a/pool_z

inception_3a/pool_x _— -
g B inception_3a/relu_3x3_reduce_z [ inception_3a/relu_5x5_reduce_z

inception_3a/relu_5x5_reduce_y

inception_3a/relu_5x5_reduce_x inception_3a/relu_3x3_reduce_y

inception_3a/relu_3x3_reduce_x

inception_3a/1x1_z inception_3a/3x3_z inception_3a/5x5_z inception_3a/pool_proj_z

inception_3a/5x5_y inception_3a/pool_proj_y

inception_3a/1x1_y inception_3a/3x3_y

inception_3a/1x1_x inception_3a/3x3_x inception_3a/5x5_x inception_3a/pool_proj_x

inception_3a/relu_5x5_z inception_3a/relu_pool_proj_z

inception_3a/relu_1x1_z inception_3a/relu_3x3_z

inception_3a/relu_5x5_y inception_3a/relu_pool_proj_y

inception_3a/relu_5x5_x inception_3a/relu_pool_proj_x inception_3a/relu_1x1_y inception_3a/relu_3x3_y

inception_3a/relu_1x1_x inception_3a/relu_3x3_x

n n
u | t | | l t e inception_3a/output_x inception_3a/output_y inception_3a/output_z

pool3a/3x3_s2_x pool3a/3x3_s2_y pool3a/3x3_s2_z

excellent CAFFE - =

inception_5b/3x3_reduce inception_5b/5x5_reduce

inception_5b/pool

inception_5b/relu_3x3_reduce inception_5b/relu_5x5_reduce

| r a I I I e W O | k inception_5b/1x1 inception_5b/3x3
" inception_Sb/relu_1x1 inception_Sb/relu_3x3

inception_5b/5x5 inception_5b/pool_proj

inception_5b/relu_5x5 inception_5b/relu_pool_proj

> inception_5b/output

|

Pool5/6x5_s1

pool5/drop_6x5_s1
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ﬁf Training Performance

No sign of overtraining- exceptional training test set
performance agreement!

4r : 0.75
- — Training Loss Work In Progress |
3.5 :— — Test Loss |
: —{0.7
— — Test Accuracy -
3 -
250 —065
S - 18
B —o6 <
15— |
11— e — e |
- | | | | |
O'50 100000 200000 300000 400000 500(908

Number of Training lterations
(\ Alexander Radovic Deep Learning at DUNE 9



Example CVN Kernels In Action:

Flrst Convolution

o Y A R
Ao el i
e 3
DB N
NN E,
SR = =
=tab ) 1] piletz
s

Here the earliest convolutional
layer in the network starts by
pulling out primitive shapes and
ines.

500

400

300f - -

Tim
f
>

200

100}

Already “showers”™ and “tracks”
are starting to form. 10




Deepe
networ

Example CVN Kernels In Action:

First Inception Module Output
True NuMu DIS Event

N the
<, now after

the firss
module we can see
more complex
features have started

- Inception

Feature Map From Col. View Inception Module

to be extracted.
Some seem ooy D i
particularly sensitive *,, -~ | *
to muon tracks, EM | RN
showers. 0 N
(\ Alexander Radovic Deep Learning at DUNE 11



ﬁ Example CVN Kernels In Action:

First Inception Module Output

Deeper in the True NukE COH Event

network, now after

the first inception

module we can see

more complex

features have started

to be extracted. son ol View

Feature Map From Col. View Inception Module

Some seem |
particularly sensitive = =~
to muon tracks, EM | Em N EmEE
showers. -

(\ Alexander Radovic Deep Learning at DUNE 11



NuMu PID

Neutrino Beam Anti-Neutrino Beam

1600
R Survived NuMu - 700 Survived NuMu
%) %)
S 1400[~ —— Beam NuE g —— Beam NuE
E — — NC E 600:_ — NC
5 @1200__ — Appeared NuE D5 @ - — Appeared NuE
8 ; B —— Appeared NuTau 8 ;500—_ — Appeared NuTau
£ Work | £8 E Work |
= o — = Q —
£S5k ork in progress || &g £ ork in progress
& > 800 — g = °F
C L [
2 £ ~ G g300_—
5 5 eo0l- o 8™
E < — N < —
L
L 400 w200
Z Z
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O 200 Q 100
= —,ht|1I4_|||_.-1—=‘—.._.'—q_fllﬂ—-——l‘-_II_JIIIIIiII]_]_LI_IILJ#II_I_

o
oL
af

OO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CVN numu CVN anumu

Cut at 0.5, guarantees no double counting due to sofmax
output of CVN

(\ Alexander Radovic Deep Learning at DUNE 12



NuMu Selected Events,

Reconstructed Energy Spectra

Neutrino Beam Anti-Neutrino Beam

i - 240 —
%) B _ n — .
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O — (@) —
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NuMu

Efficiency Efficiency
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97.6 81.5
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Nuk PID

Neutrino Beam Anti-Neutrino Beam

Survived NuMu
—— Beam NuE
— NC
— Appeared NuE

Survived NuMu 40

(o)
o

—— Beam NuE
— NC
— Appeared NuE

@
o

III‘IIII|||II|IIII|IIII
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o
w
o

IIIIIIIII|IIII|IIII|IIII

—— Appeared NuTau

Work In progress

—— Appeared NuTau

Work in progress

2]
o

)]
(6]

Arbitrary Exposure

Arbitrary Exposure

—
(6]

—
o

DUNE FD Events, With Oscillations,
DUNE FD Events, With Oscillations,

(6,1

TTTTT

Eer e tlledbepar e liptoticnE ) . -

; o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
CVN nue CVN anue

Cut at 0.8, optimized for S/Sart(S+B)
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DUNE FD Events, With Oscillations,

Arbitrary Exposure

Nuk Selected Events, Reconstructed

Energy Spectra

Neutrino Beam Anti-Neutrino Beam

Survived NuMu Survived NuMu
50 —— Beam NuE —— Beam NuE
— NC 20 — NC

— Appeared NuE — Appeared NuE

— Appeared NuTau

Work in progress

— Appeared NuTau

Work in progress

Arbitrary Exposure

%%&J'll'
lt:

20

DUNE FD Events, With Oscillations,

IIII|IIII|IIII|IIII|IIII|IIII

T S B i B nJ-InlnrH[ll—nrh—nurnhun:]llm 0 =
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Appeared
NuE

Appeared

NuE NuMu Beam NuE NC

NuMu Beam NuE NC

Efficiency A° MK}

Efficiency

Rejection 99.8 521 98.6 8538 Rejection 99.9 48.2 98.8 8/.0
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The Bottom Line

Appearance Efficiency (FHC)

Excellent efficiency

—_—

. P .
already achieved, = 0o Work In progress
i i S T
rapidly making £ f T
progress towards the c F
O
TDR goals. i
2 0.6F-
0.5F
04 :_ ------------------- Goal Performance
---------- CVN: First Pass
0.3 . CVN: Improved Architecture H
------------------- Signal
0.2 .-: ------------------ NC bg
0.1
1 2 3 4 5 6 7 8

Reconstructed Energy
(\ Alexander Radovic Deep Learning at DUNE 10



Deep Learning
for Event Reconstruction

(\ Alexander Radovic Deep Learning at DUNE



ﬁ The original dream

/o Reconstruction?
} |
4 (RRERRY ' 3
,—Where we’'re going, we don't need
2 . reconstruction.

Alexander Radovic Deep Learning at DUNE



fﬁfWhere we're really going

Deep Learning

k‘ Conventional

Reconstruction

(\ Alexander Radovic Deep Learning at DUNE 17



ﬁ CNNs For Hit Level |

selected pixel and

W
Input image surrounding patch

Convolutional Neural Network

4

y

convolutional layers

probability:
EM-like

track-like

VRVEY

empty

dense layers output

chain of algorithms —__
.;. /\ .;. “\-\"/,-\ : . .
S < Y - - cluster prediction
s ok ~\<"’"’"’
B N T TN
hits single hit prediction | /:"/ :
ProtoDUNE simulation, LArSoft. Gauss hit finder for hits, linecluster for 2D E”. . ;

clusters, and PMA for 3D tracking/vertexing is used.

//1 0.987

—
//(\/w 0.968
7 \

p 0.952 \ )
N 7 P 0.988 ~_...//) 0.948
p=0.970 ™,

Y )
p=0.624
[/ “p=0.989
X
7z e

3D: P(track-like) & final decision

18



CNNs For Hit Level |ID

EM / track separation: examples of ProtoDUNE events

ProtoDUNE simulation,
LArSoft /

/'/
.-"' /.--' »"'.'/
7t 2.5 GeV/c i % 4 N NG
m 25 Gevic - ProtoDUNE simulation, ;e
- L ArSoft e
/“_
‘\‘ § *"-, \\.\ \\\
) _‘__!‘ \/ \(
A
CNN output: MC truth:

input: 2D ADC EM-like (blue) / track-like (red) EM-like (green) / track-like (red)

Event displays: R.Sulej, Connecting The Dots / Intelligent Trackers, May 2017, LAL-Orsay, France



ﬁf Conclusions

Active part of the rapid development of deep learning tools for
liquid argon TPCs (see previous, excellent, talk).

Early attempts at taking the event classification work
pioneered at NOvVA to DUNE already show excellent
performance, rapidly closing in on the TDR targets.

Exciting working beyond event classification, building tools
which might help solve the difficult problem of liquid argon
reconstruction.

Just the tip of the iceberg! Huge amounts of room to optimize
our classification network, and to explore other possibilities.

(\ Alexander Radovic Deep Learning at DUNE 20
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Neural Networks

”l-.]f.ic'll

. xr = input vector

y=o (W +b)

1
0.9}
0.8
0.7t

0.5F
0.4

0.2}
0.1F
0
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RE Training A Neural Network

Start with a “Loss” function which characterizes the
performance of the network. For supervised learning:

LW.X) =+ 3 —wilog(f(z:) ~ (1 yi)log (1~ f(x))

L(W.x)
O



R Training A Neural Network

Start with a “Loss” function which characterizes the
performance of the network. For supervised learning:

1

L(W,X) = N Z —y;log (f(z:)) — (1 —yi)log (1 — f(=:))

Add in a regularization term to avoid overfitting:

22



RE Training A Neural Network

Start with a “Loss” function which characterizes the
performance of the network. For supervised learning:

LW.X) =+ 3 —wilog(f(z:) ~ (1 yi)log (1~ f(x))

Add in a regularization term to avoid overfitting:
1
L'=L+ > Z w?
J

Propagate the gradient of the network back to specific nodes
using back propagation. AKA apply the chain rule:

v oI OL 0f 0gn  Ogr+1 09k
Y 5f 6gn Ogn—1 " Ogr Ow;
Update weights using gradient descent:

W, = Wj — V., L




ﬁf Deep Neural Networks

What if we try to keep all the input data” Why not rely on a
wide, extremely Deep Neural Network (DNN) to learn the
features it needs? Sufficiently deep networks make excellent
function approximators:

3 hidden neurons | 6 hidden neurons B 20 hidden neurons

http://cs231n.github.io/neural-networks-1/

Possible to train now with new activation functions, GPUs etc.
e 23

T VN


http://cs231n.github.io/neural-networks-1/

ﬁ()onvo\utiona\ Neural Networks

Instead of training a weight for every input pixel, try learning
welights that describe kernel operations, convolving that kernel
across the entire image to exaggerate useful features.

Inspired by research showing that cells in the visual cortex are
only responsive to small portions of the visual field.

( 195 + 196 + 193
X -1 X -1 X -1

+ 152 + 164 + 199

X -1 X 8 X -1

+ 162 + 155  +| 169

X -1 X -1 X -1

outline

http://setosa.io/ev/image-kernels/
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ﬁ()onvo\utiona\ Neural Networks

Instead of training a weight for every input pixel, try learning
welights that describe kernel operations, convolving that kernel
across the entire image to exaggerate useful features.

Inspired by research showing that cells in the visual cortex are
only responsive to small portions of the visual field.

Raw data Low-level features Mid-level features High-level features

ol DL T
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G o T e

CRED Y W R
Temb B Ul =n En
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https://developer.nvidia.com/deep-learning-courses

ﬁf Convolutional Layers

—very trained kernel operation is the same across an entire
iINnput Image or feature map.

 Each convolutional layer trains an array of kernels to
produce output feature maps.

* Weights for a given
convolutional layer are
a 4D tensor of
NXMxHXW (number of
iIncoming features,
number of outgoing |

features, height, and
width)

layer m-| hidden layer m




value
e Same

map S

X

A

Pooling Layers

* Intelligent downscaling of input feature maps.
* Stride across images taking either the maximum or average

INn a patch.
number of feature maps, with each individual feature

Nrunk by an amount dependent on the stride of the
pooling layers.
Single depth slice

max pool with 2x2 filters
and stride 2

>

[ 2 | 4
aemoN / | 8
3 | 2 NN
1 | 2 [t

26



The LeNet

In its simplest form a convolutional neural network is a series
of convolutional, max pooling, and MLP layers:

Input layer (S1) 4 feature maps

1 (C1) 4 feature maps (52) 6 feature maps (C2) 6 feature maps
|

o

l convolution layer l sub-sampling layer | convolution layer l sub-sampling layer | fully connected MLP |

The “LeNet” circa 1989

http://deeplearning.net/tutorial/lenet.html http://yann.lecun.com/exdb/lenet/



Modern CNNs

Renaissance in CNN use over the last few years, with increasingly
complex network-in-network models that allow for deeper learning of
more complex features.

Filter
concatenation

/ 3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions & 4 4

&tions 1x1 convolutions 3x3 max pooling

Previous layer

“Going deeper with convolutions” arXiv:1409.4842

The brilliance of this inception module is that it uses kernels of several
sizes but keeps the number of feature maps under control by use of a
1x1 convolution.

N Alexander Radovic Deep Learning at DUNE 28
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Modern CNNs

Renaissance in CNN use over the last few years, with increasingly
complex network-in-network models that allow for deeper learning of
more complex features.

)~ww&§ﬁm G0

J
’

p—

'

The brilliance of this inception module is that it uses kernels of several
sizes but keeps the number of feature maps under control by use of a
1x1 convolution.

N Alexander Radovic Deep Learning at DUNE 28
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ﬁf Modern CNNs

Renaissance in CNN use over the last few years, with increasingly
complex network-in-network models that allow for deeper learning of

more complex features.

iy n’#"\'m' !
| ﬂ{/ﬂklmlﬁlﬁlﬁ ‘;
OHEHHHH Iﬂ@ylg@' "%'@WW- - —@ | Convolutor

f
H]
ﬂ fiR A s Pooling

Other

The “GoogleNet” circa 2014

The brilliance of this inception module is that it uses kernels of several
sizes but keeps the number of feature maps under control by use of a
1x1 convolution.

N Alexander Radovic Deep Learning at DUNE 28
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Superhuman Performance

.V X A

mite container ship motor scooter

| mite container ship motor scooter ledpard
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grille mushroom herry
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Madagascar cat |
convertible | agaric dalmatian squirrel monkey X
grille mushroom grape spider monkey |
:]J pickup jelly fungus elderberry titi |,
beach wagon gill fungus |ffordshire bullterrier indri |’ o, 7
fire engine || dead-man's-fingers currant howler monkey |'y @

Some examples from one of the early breakout CNNSs.

Googles latest “Inception-v4” net achieves 3.46% top 5 error
rate on the image net dataset. Human performance is at ~5%.
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