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The DUNE Experiment
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• Planned precision long baseline neutrino oscillation 
experiment. 

• Designed to provide definitive answers on CP violation in 
the neutrino sector and the mass hierarchy. 

• ND design still ongoing, but the FD will be a several KT 
underground liquid argon TPC. 
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Why Deep Neural Networks?

Alexander Radovic Deep Learning at DUNE

• Measuring neutrino oscillations is all about measuring how 
neutrinos change between different lepton flavor states as 
a function of distance traveled and neutrino energy. 
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Why Deep Neural Networks?

Alexander Radovic

• Measuring neutrino oscillations is all about measuring how 
neutrinos change between different lepton flavor states as 
a function of distance traveled and neutrino energy. 

From S. Parke, “Neutrino 
Oscillation Phenomenology”  
in Neutrino Oscillations: 
Present Status and Future 
Plans 
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• Any oscillation analysis can benefit from precise 
identification of the interaction in two ways: 
• Estimating the lepton flavor of the incoming neutrino. 
• Correctly identifying the type of neutrino interaction, to 

better estimate the neutrino energy, aka is it a quasi 
elastic event or a resonance event? 

Quasi-Elastic Resonance
3

Why Deep Neural Networks?
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• Liquid argon detectors are also the perfect domain: 
• Large ~uniform volumes where spatially invariant 

response is a benefit.  
• One, main, detector system. 
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Why Deep Neural Networks?

DUNE νe Candidate

• Liquid argon detectors are also the perfect domain: 
• Large ~uniform volumes where spatially invariant 

response is a benefit.  
• One, main, detector system. 



Convolutional Neural Networks

http://setosa.io/ev/image-kernels/

Input Feature Map
Kernel 5

Instead of training a weight for every input pixel, try learning 
weights that describe kernel operations, convolving that kernel 
across the entire image to exaggerate useful features.   
Inspired by research showing that cells in the visual cortex are 
only responsive to small portions of the visual field. 

http://setosa.io/ev/image-kernels/


Convolutional Neural Networks

Feature Map
5

https://developer.nvidia.com/deep-learning-courses

Instead of training a weight for every input pixel, try learning 
weights that describe kernel operations, convolving that kernel 
across the entire image to exaggerate useful features.   
Inspired by research showing that cells in the visual cortex are 
only responsive to small portions of the visual field. 
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https://developer.nvidia.com/deep-learning-courses


Deep Learning 
for Event Identification
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Our Input
Each “pixel” is the integrated ADC response in that time/
space slice. These maps are chosen to be 500 wires long 
and 1.2ms wide (split into 500 time chunks). 
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Work in progress

The Training Sample
• 1.2M events, only preselection requiring 100 hits split across 

any number of planes. 
• Labels are from GENIE truth, neutrino vs. antineutrino is 

ignored. 
• No oscillation information, just the raw input distributions. 
• 80% for training and 20% for testing.
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Our Architecture
Based on the NOvA CNN, named CVN. Small edits to better 
suit a larger input image and three distinct views. 

6/29/2017 Netscope

http://ethereon.github.io/netscope/#/editor 1/1

Warning

Can't infer network data shapes. Can't infer
output shape of the 'data' layer of type 'Data'.
TypeError: Cannot read property 'batch_size' of
undefined

Untitled Network

data jitter

jitteredData

slice

conv1/11x11_s4_x

conv1/relu_11x11_x

pool1/3x3_s2_x

pool1/norm1_x

conv2/3x3_reduce_x

conv2/relu_3x3_reduce_x

conv2/3x3a_x

conv2/relu_3x3a_x

conv2/3x3_x

conv2/relu_3x3_x

conv2/norm2_x

pool2/3x3_s2_x

inception_3a/1x1_x

inception_3a/relu_1x1_x

inception_3a/3x3_reduce_x

inception_3a/relu_3x3_reduce_x

inception_3a/3x3_x

inception_3a/relu_3x3_x

inception_3a/5x5_reduce_x

inception_3a/relu_5x5_reduce_x

inception_3a/5x5_x

inception_3a/relu_5x5_x

inception_3a/pool_x

inception_3a/pool_proj_x

inception_3a/relu_pool_proj_x

inception_3a/output_x

pool3a/3x3_s2_x

conv1/11x11_s4_y

conv1/relu_11x11_y

pool1/3x3_s2_y

pool1/norm1_y

conv2/3x3_reduce_y

conv2/relu_3x3_reduce_y

conv2/3x3a_y

conv2/relu_3x3a_y

conv2/3x3_y

conv2/relu_3x3_y

conv2/norm2_y

pool2/3x3_s2_y

inception_3a/1x1_y

inception_3a/relu_1x1_y

inception_3a/3x3_reduce_y

inception_3a/relu_3x3_reduce_y

inception_3a/3x3_y

inception_3a/relu_3x3_y

inception_3a/5x5_reduce_y

inception_3a/relu_5x5_reduce_y

inception_3a/5x5_y

inception_3a/relu_5x5_y

inception_3a/pool_y

inception_3a/pool_proj_y

inception_3a/relu_pool_proj_y

inception_3a/output_y

pool3a/3x3_s2_y

conv1/11x11_s4_z

conv1/relu_11x11_z

pool1/3x3_s2_z

pool1/norm1_z

conv2/3x3_reduce_z

conv2/relu_3x3_reduce_z

conv2/3x3a_z

conv2/relu_3x3a_z

conv2/3x3_z

conv2/relu_3x3_z

conv2/norm2_z

pool2/3x3_s2_z

inception_3a/1x1_z

inception_3a/relu_1x1_z

inception_3a/3x3_reduce_z

inception_3a/relu_3x3_reduce_z

inception_3a/3x3_z

inception_3a/relu_3x3_z

inception_3a/5x5_reduce_z

inception_3a/relu_5x5_reduce_z

inception_3a/5x5_z

inception_3a/relu_5x5_z

inception_3a/pool_z

inception_3a/pool_proj_z

inception_3a/relu_pool_proj_z

inception_3a/output_z

pool3a/3x3_s2_z

merge_x_y

inception_5b/1x1

inception_5b/relu_1x1

inception_5b/3x3_reduce

inception_5b/relu_3x3_reduce

inception_5b/3x3

inception_5b/relu_3x3

inception_5b/5x5_reduce

inception_5b/relu_5x5_reduce

inception_5b/5x5

inception_5b/relu_5x5

inception_5b/pool

inception_5b/pool_proj

inception_5b/relu_pool_proj

inception_5b/output

pool5/6x5_s1

pool5/drop_6x5_s1

loss3/classi�er15

loss3/loss3

layer {
  name: "inception_5b/1x1"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/1x1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_5b/relu_1x1"
  type: "ReLU"
  bottom: "inception_5b/1x1"
  top: "inception_5b/1x1"
}
layer {
  name: "inception_5b/3x3_reduce"
  type: "Convolution"
  bottom: "merge_x_y"
  top: "inception_5b/3x3_reduce"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "inception_5b/relu_3x3_reduce"
  type: "ReLU"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3_reduce"
}
layer {
  name: "inception_5b/3x3"
  type: "Convolution"
  bottom: "inception_5b/3x3_reduce"
  top: "inception_5b/3x3"

1504
1505
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1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

The architecture 
attempts to 
categorize events 
as {νµ, νe, ντ } × 
{QE,RES,DIS}, 
NC.

Built in the 
excellent CAFFE 
framework.
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Training Performance
No sign of overtraining- exceptional training test set 
performance agreement!

Alexander Radovic Deep Learning at DUNE 9

Work in progress



X

=

Here the earliest convolutional 
layer in the network starts by 
pulling out primitive shapes and 
lines.  

Already “showers” and “tracks” 
are starting to form.

Example CVN Kernels In Action: 
First Convolution

10



Deeper in the 
network, now after 
the first inception 
module we can see 
more complex 
features have started 
to be extracted. 

Some seem 
particularly sensitive 
to muon tracks, EM 
showers.

Example CVN Kernels In Action: 
First Inception Module Output

True NuMu DIS Event

Alexander Radovic Deep Learning at DUNE 11



Deeper in the 
network, now after 
the first inception 
module we can see 
more complex 
features have started 
to be extracted. 

Some seem 
particularly sensitive 
to muon tracks, EM 
showers.

Example CVN Kernels In Action: 
First Inception Module Output

True NuE COH Event
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NuMu PID

Neutrino Beam

Cut at 0.5, guarantees no double counting due to sofmax 
output of CVN

Anti-Neutrino Beam
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NuMu Selected Events, 
Reconstructed Energy Spectra

NuMu Appeared 
NuE Beam NuE NC NuTau

Efficiency 80.6

Rejection 99.0 98.7 97.6 81.5

NuMu Appeared 
NuE Beam NuE NC NuTau

Efficiency 87.7

Rejection 99.6 99.3 98.3 81.4

Neutrino Beam Anti-Neutrino Beam
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NuE PID

Cut at 0.8, optimized for S/Sqrt(S+B)

Neutrino Beam Anti-Neutrino Beam
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Work in progress Work in progress



NuE Selected Events, Reconstructed 
Energy Spectra

Appeared 
NuE NuMu Beam NuE NC NuTau

Efficiency 67.5

Rejection 99.8 52.1 98.6 85.8

Appeared 
NuE NuMu Beam NuE NC NuTau

Efficiency 79.3

Rejection 99.9 48.2 98.8 87.6

D
U

N
E 

FD
 E

ve
nt

s,
 W

ith
 O

sc
illa

tio
ns

, 
Ar

bi
tra

ry
 E

xp
os

ur
e

D
U

N
E 

FD
 E

ve
nt

s,
 W

ith
 O

sc
illa

tio
ns

, 
Ar

bi
tra

ry
 E

xp
os

ur
e

Alexander Radovic Deep Learning at DUNE 15

Work in progress Work in progress

Neutrino Beam Anti-Neutrino Beam



The Bottom Line

Alexander Radovic Deep Learning at DUNE

Excellent efficiency 
already achieved, 
rapidly making 
progress towards the 
TDR goals.

16

Work in progress



Deep Learning 
for Event Reconstruction
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The original dream

Alexander Radovic Deep Learning at DUNE

Reconstruction?

Where we’re going, we don’t need 
reconstruction.

17



Where we’re really going

Alexander Radovic Deep Learning at DUNE

Deep Learning

Conventional  
Reconstruction

17



hits single hit prediction

cluster prediction

3D: P(track-like) & final decision
ProtoDUNE simulation, LArSoft. Gauss hit finder for hits, linecluster for 2D 
clusters, and PMA for 3D tracking/vertexing is used.

CNNs For Hit Level ID

chain of algorithms

18



e+

e-

p

input: 2D ADC MC truth: 
EM-like (green) / track-like (red)

CNN output: 
EM-like (blue) / track-like (red)

ProtoDUNE simulation, 
LArSoft

ProtoDUNE simulation, 
LArSoft

π+ 2.5 GeV/c

π+ 2.5 GeV/c

CNNs For Hit Level ID

Event displays: R.Sulej, Connecting The Dots / Intelligent Trackers, May 2017, LAL-Orsay, France

EM / track separation: examples of ProtoDUNE events



Conclusions

Alexander Radovic Deep Learning at DUNE

Active part of the rapid development of deep learning tools for 
liquid argon TPCs (see previous, excellent, talk). 

Early attempts at taking the event classification work 
pioneered at NOvA to DUNE already show excellent 
performance, rapidly closing in on the TDR targets. 

Exciting working beyond event classification, building tools 
which might help solve the difficult problem of liquid argon 
reconstruction. 

Just the tip of the iceberg! Huge amounts of room to optimize 
our classification network, and to explore other possibilities. 

20



Q&A

Many thanks to the DUNE collaboration, Fermilab National Accelerator laboratory, 
and to the National Science Foundation.



Neural Networks
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Neural Networks
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x = input vector

y 

y = � (Wx+ b)

� =



Training A Neural Network

22

L(
W

,x
)

W

Start with a “Loss” function which characterizes the 
performance of the network. For supervised learning:

L(W,X) =

1

N

N
examplesX

1

�yi log (f(xi))� (1� yi) log (1� f(xi))



Training A Neural Network
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L(W,X) =

1

N

N
examplesX

1

�yi log (f(xi))� (1� yi) log (1� f(xi))

Add in a regularization term to avoid overfitting:
L0 = L+

1

2

X

j

w2
j

Start with a “Loss” function which characterizes the 
performance of the network. For supervised learning:



Training A Neural Network

L(W,X) =

1

N

N
examplesX

1

�yi log (f(xi))� (1� yi) log (1� f(xi))

Add in a regularization term to avoid overfitting:
L0 = L+

1

2

X

j

w2
j

Update weights using gradient descent:

Propagate the gradient of the network back to specific nodes 
using back propagation. AKA apply the chain rule:

w
0

j = wj � ↵rwjL

rwjL =
�L

�f

�f

�gn

�gn
�gn�1

...
�gk+1

�gk

�gk
�wj

Start with a “Loss” function which characterizes the 
performance of the network. For supervised learning:



Deep Neural Networks
What if we try to keep all the input data? Why not rely on a 
wide, extremely Deep Neural Network (DNN) to learn the 
features it needs? Sufficiently deep networks make excellent  
function approximators: 

23

http://cs231n.github.io/neural-networks-1/

Possible to train now with new activation functions, GPUs etc. 

http://cs231n.github.io/neural-networks-1/


Convolutional Neural Networks

http://setosa.io/ev/image-kernels/

Input Feature Map
Kernel 24

Instead of training a weight for every input pixel, try learning 
weights that describe kernel operations, convolving that kernel 
across the entire image to exaggerate useful features.   
Inspired by research showing that cells in the visual cortex are 
only responsive to small portions of the visual field. 

http://setosa.io/ev/image-kernels/


Convolutional Neural Networks

Feature Map
24

https://developer.nvidia.com/deep-learning-courses

Instead of training a weight for every input pixel, try learning 
weights that describe kernel operations, convolving that kernel 
across the entire image to exaggerate useful features.   
Inspired by research showing that cells in the visual cortex are 
only responsive to small portions of the visual field. 

https://developer.nvidia.com/deep-learning-courses


Convolutional Layers
• Every trained kernel operation is the same across an entire 

input image or feature map. 
• Each convolutional layer trains an array of kernels to 

produce output feature maps.
• Weights for a given 

convolutional layer are 
a 4D tensor of 
NxMxHxW (number of 
incoming features, 
number of outgoing 
features, height, and 
width)

25



Pooling Layers
• Intelligent downscaling of input feature maps. 
• Stride across images taking either the maximum or average 

value in a patch. 
• Same number of feature maps, with each individual feature 

map shrunk by an amount dependent on the stride of the 
pooling layers.

26



The LeNet
In its simplest form a convolutional neural network is a series 
of convolutional, max pooling, and MLP layers:

The “LeNet” circa 1989

http://deeplearning.net/tutorial/lenet.html http://yann.lecun.com/exdb/lenet/



Modern CNNs
Renaissance in CNN use over the last few years, with increasingly 
complex network-in-network models that allow for deeper learning of 
more complex features.

 “Going deeper with convolutions” arXiv:1409.4842

The brilliance of this inception module is that it uses kernels of several 
sizes but keeps the number of feature maps under control by use of a 
1x1 convolution.

Alexander Radovic Deep Learning at DUNE 28



Modern CNNs
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The brilliance of this inception module is that it uses kernels of several 
sizes but keeps the number of feature maps under control by use of a 
1x1 convolution.

Renaissance in CNN use over the last few years, with increasingly 
complex network-in-network models that allow for deeper learning of 
more complex features.



Modern CNNs

The “GoogleNet” circa 2014

Convolution 
Pooling 
Softmax 
Other
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The brilliance of this inception module is that it uses kernels of several 
sizes but keeps the number of feature maps under control by use of a 
1x1 convolution.

Renaissance in CNN use over the last few years, with increasingly 
complex network-in-network models that allow for deeper learning of 
more complex features.



Superhuman Performance

Alexander Radovic Deep Learning at DUNE 29

Some examples from one of the early breakout CNNs.
Googles latest “Inception-v4” net achieves 3.46% top 5 error  
rate on the image net dataset. Human performance is at ~5%.


