Direct CP asymmetry in $D \rightarrow \pi \pi$ and $D \rightarrow K K$ in QCD

Table of Contents:

- Introduction: CP-violation in charm
- Matrix elements in LCSRs
- Results
- Things to take home

Based on arXiv: 1706.07780 with A. Khodjamirian

Introduction

- Fundamental problem: CP-violation in the up-quark sector
- can manifest itself in charm $\triangle \mathrm{C}=1$ transitions via

$$
\Gamma(D \rightarrow f) \neq \Gamma(C P[D] \rightarrow C P[f])
$$

- ... and observed via CP-violating asymmetry

$$
a_{\mathrm{CP}}(f)=\frac{\Gamma(D \rightarrow f)-\Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(D \rightarrow f)+\Gamma(\bar{D} \rightarrow \bar{f})}
$$

- this asymmetry has been studied with $\pi^{+} \pi^{-}$and $\mathrm{K}^{+} \mathrm{K}^{-}$final states

$$
\begin{aligned}
a_{C P}\left(K^{-} K^{+}\right) & =(0.04 \pm 0.12(\text { stat }) \pm 0.10(\text { syst })) \% \\
a_{C P}\left(\pi^{-} \pi^{+}\right) & =(0.07 \pm 0.14(\text { stat }) \pm 0.11(\text { syst })) \%
\end{aligned}
$$

- Note that initial state is a D^{0} meson: possible CPV in mixing?
- Differences of CP-violating asymmetries with D^{0} mesons
- each CPV asymmetry contains three components
- since for CP-eigenstate final states (such as $\pi^{+} \pi^{-}$and $\mathrm{K}^{+} \mathrm{K}^{-}$) $a^{m}{ }_{k K}=a^{m}{ }_{\pi \pi}$ and $a^{i}{ }_{k \kappa}=a_{\pi \pi}^{i}$, mixing asymmetries would (ideally) cancel

$$
\Delta a_{\mathrm{CP}}^{\mathrm{dir}}=a_{\mathrm{CP}}^{\mathrm{dir}}\left(f_{1}\right)-a_{\mathrm{CP}}^{\mathrm{dir}}\left(f_{2}\right) \quad \begin{aligned}
& \text { SU(3) is badly broken in D-decays } \\
& \text { e.g. } \operatorname{Br}(\mathbf{D} \rightarrow \operatorname{KK}) \sim 3 \operatorname{Br}(\mathbf{D} \rightarrow \pi \pi)
\end{aligned}
$$

- recent measurements indicate that

$$
\begin{aligned}
\Delta a_{C P}^{d i r} & =(-0.12 \pm 0.13) \% \\
\Delta a_{C P}^{d i r} & =(-0.10 \pm 0.08 \pm 0.03) \%
\end{aligned}
$$

- Naively, $\Delta a_{C P}=a_{K K}^{d}-a_{\pi \pi}^{d} \approx 2 a_{K K}^{d}$. How can it be interpreted?

Introduction: theoretical interpretations

- Naively, there are contributions from trees and penguins
- ... which we need to calculate/fit to predict CPV

$$
\begin{aligned}
& A_{K K}=\frac{G_{F}}{\sqrt{2}} \lambda\left[\left(T+E+P_{s d}\right)+a \lambda^{4} e^{-i \gamma} P_{b d}\right] \\
& A_{\pi \pi}=\frac{G_{F}}{\sqrt{2}} \lambda\left[\left(-(T+E)+P_{s d}\right)+a \lambda^{4} e^{-i \gamma} P_{b d}\right] \\
& \lambda=\sin \theta_{C}
\end{aligned}
$$

- Need to estimate size of penguin/penguin contractions vs. tree
- is there an unknown penguin enhancement (similar to $\Delta I=1 / 2$)?
- SU(3) analysis: how well do we know ME in broken SU(3)?

Golden \& Grinstein PLB 222 (1989) 501;
Pirtshalava \& Uttayarat 1112.5451

- QCD factorization-like: how well do we know $1 / m_{c}$ corrections?

Isidori et al PLB 711 (2012) 46; Brod et al 1111.5000

- flavor-flow diagram analyses

Broad et al 1203.6659; Bhattacharya et al PRD 85 (2012) 054014; Cheng \& Chiang 1205.0580

Is this a penguin or a tree?

without QCD

with QCD

Calculating CP-asymmetries in QCD

- Effective Hamiltonian for singly Cabibbo-suppressed (SCS) decays
- drop all "penguin" operators (Q_{i} for $\mathrm{i} \geq 3$) as C_{i} are small, $\lambda_{q}=V_{u q} V_{c q}^{*}$,

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}}\left[\sum_{q=d, s} \lambda_{q}\left(C_{1} \mathcal{Q}_{1}^{q}+C_{2} \mathcal{Q}_{2}^{q}\right)-\lambda_{b} \sum_{j, \ldots, \ldots, 8,} C_{i} \mathcal{Q}_{i}\right]
$$

- recall that $\sum_{q=d, s, b} \lambda_{q}=0$ or $\lambda_{d}=-\left(\lambda_{s}+\lambda_{b}\right)$ and

$$
\mathcal{Q}_{1}^{q}=\left(\bar{u} \Gamma_{\mu} q\right)\left(\bar{q} \Gamma^{\mu} c\right), \quad \mathcal{Q}_{2}^{q}=\left(\bar{q} \Gamma_{\mu} q\right)\left(\bar{u} \Gamma^{\mu} c\right)
$$

- define a short-hand notation

$$
\mathcal{O}^{q} \equiv \frac{G_{F}}{\sqrt{2}} \sum_{i=1,2} C_{i} \mathcal{Q}_{i}^{q}, \quad \text { with } \quad q=d, s
$$

- ... and matrix elements, e.g.

$$
A\left(D^{0} \rightarrow \pi^{-} \pi^{+}\right)=\lambda_{d}\left\langle\pi^{-} \pi^{+}\right| \mathcal{O}^{d}\left|D^{0}\right\rangle+\lambda_{s}\left\langle\pi^{-} \pi^{+}\right| \mathcal{O}^{s}\left|D^{0}\right\rangle
$$

Amplitude decomposition

- Recipe for calculation of CPV asymmetry
- prepare decay amplitudes

$$
\begin{aligned}
& A\left(D^{0} \rightarrow \pi^{-} \pi^{+}\right)=\lambda_{d}\left\langle\pi^{-} \pi^{+}\right| \mathcal{O}^{d}\left|D^{0}\right\rangle+\lambda_{s}\left\langle\pi^{-} \pi^{+}\right| \mathcal{O}^{s}\left|D^{0}\right\rangle \\
& A\left(D^{0} \rightarrow K^{-} K^{+}\right)=\lambda_{s}\left\langle K^{-} K^{+}\right| \mathcal{O}^{s}\left|D^{0}\right\rangle+\lambda_{d}\left\langle K^{-} K^{+}\right| \mathcal{O}^{d}\left|D^{0}\right\rangle
\end{aligned}
$$

- add and subtract $\lambda_{b}\left\langle\pi^{-} \pi^{+}\right| \mathcal{O}^{s}\left|D^{0}\right\rangle$, put in a new form

$$
\begin{aligned}
& A\left(D^{0} \rightarrow \pi^{-} \pi^{+}\right)=-\lambda_{s} \mathcal{A}_{\pi \pi}\left[1+\frac{\lambda_{b}}{\lambda_{s}}\left(1+r_{\pi} \exp \left(i \delta_{\pi}\right)\right)\right] \\
& A\left(D^{0} \rightarrow K^{-} K^{+}\right)=\lambda_{s} \mathcal{A}_{K K}\left[1-\frac{\lambda_{b}}{\lambda_{s}} r_{K} \exp \left(i \delta_{K}\right)\right]
\end{aligned}
$$

- define things we cannot compute (extract from branching ratios)

$$
\begin{aligned}
& \mathcal{A}_{\pi \pi}=\left\langle\pi^{-} \pi^{+}\right| \mathcal{O}^{d}\left|D^{0}\right\rangle-\left\langle\pi^{-} \pi^{+}\right| \mathcal{O}^{s}\left|D^{0}\right\rangle \\
& \mathcal{A}_{K K}=\left\langle K^{-} K^{+}\right| \mathcal{O}^{s}\left|D^{0}\right\rangle-\left\langle K^{-} K^{+}\right| \mathcal{O}^{d}\left|D^{0}\right\rangle
\end{aligned}
$$

- ... and things we can $\mathcal{P}_{\pi \pi}^{s}=\left\langle\pi^{-} \pi^{+}\right| \mathcal{O}^{s}\left|D^{0}\right\rangle, \quad \mathcal{P}_{K K}^{d}=\left\langle K^{-} K^{+}\right| \mathcal{O}^{d}\left|D^{0}\right\rangle$

$$
r_{\pi}=\left|\frac{\mathcal{P}_{\pi \pi}^{s}}{\mathcal{A}_{\pi \pi}}\right|, \quad r_{K}=\left|\frac{\mathcal{P}_{K K}^{d}}{\mathcal{A}_{K K}}\right|
$$

Amplitude decomposition

- Some things to keep in mind
- "penguin-type amplitudes" $\mathcal{P}_{\pi \pi}^{s}$ and $\mathcal{P}_{K K}^{d}$ denote matrix elements of operators that contain quark-antiquark pair that does not match the valence content of the final state mesons; otherwise no relation to penguin topological amplitudes

$$
\mathcal{P}_{\pi \pi}^{s}=\left\langle\pi^{-} \pi^{+}\right| \mathcal{O}^{s}\left|D^{0}\right\rangle, \quad \mathcal{P}_{K K}^{d}=\left\langle K^{-} K^{+}\right| \mathcal{O}^{d}\left|D^{0}\right\rangle
$$

- calculate $\mathcal{P}_{\pi \pi}^{s}$ and $\mathcal{P}_{K K}^{d}$ using a modified light-cone QCD sum rules

$$
\begin{aligned}
r_{\pi} & =\left|\frac{\mathcal{P}_{\pi \pi}^{s}}{\mathcal{A}_{\pi \pi}}\right|, \quad r_{K}=\left|\frac{\mathcal{P}_{K K}^{d}}{\mathcal{A}_{K K}}\right| \\
\delta_{\pi(K)} & =\arg \left[\mathcal{P}_{\pi \pi(K K)}^{s(d)}\right]-\arg \left[\mathcal{A}_{\pi \pi(K K)}\right]
\end{aligned}
$$

- weak phase $r_{b} e^{-i \gamma}=\frac{\lambda_{b}}{\lambda_{s}}$

Direct CP-violating asymmetries

- Setting up direct CP asymmetry
- each amplitude has two parts with own weak and strong phases

$$
\begin{aligned}
& A\left(D^{0} \rightarrow \pi^{-} \pi^{+}\right)=-\lambda_{s} \mathcal{A}_{\pi \pi}\left[1+\frac{\lambda_{b}}{\lambda_{s}}\left(1+r_{\pi} \exp \left(i \delta_{\pi}\right)\right)\right] \\
& A\left(D^{0} \rightarrow K^{-} K^{+}\right)=\lambda_{s} \mathcal{A}_{K K}\left[1-\frac{\lambda_{b}}{\lambda_{s}} r_{K} \exp \left(i \delta_{K}\right)\right]
\end{aligned}
$$

- this implies for the direct CP-violating asymmetries

$$
\begin{aligned}
a_{C P}^{d i r}\left(K^{-} K^{+}\right) & =-2 r_{b} r_{K} \sin \delta_{K} \sin \gamma \\
a_{C P}^{d i r}\left(\pi^{-} \pi^{+}\right) & =2 r_{b} r_{\pi} \sin \delta_{\pi} \sin \gamma
\end{aligned}
$$

- ... and for their difference

$$
\Delta a_{C P}^{d i r}=-2 r_{b} \sin \gamma\left(r_{K} \sin \delta_{K}+r_{\pi} \sin \delta_{\pi}\right)
$$

- We need to compute $r_{\pi(K)}$ and $\delta_{\pi(K)}$

Calculating matrix elements

- Use modified light-cone QCD Sum Rule (LCSR) method

- start with the correlation function $\left(j_{5}^{(D)}=i m_{c} \bar{c} \gamma_{5} u\right.$ and $\left.j_{\alpha 5}^{(\pi)}=\bar{d} \gamma_{\alpha} \gamma_{5} u\right)$

$$
\begin{array}{r}
F_{\alpha}(p, q, k)=i^{2} \int d^{4} x e^{-i(p-q) x} \int d^{4} y e^{i(p-k) y}\langle 0| T\left\{j_{\alpha 5}^{(\pi)}(y) \mathcal{Q}_{1}^{s}(0) j_{5}^{(D)}(x)\right\}\left|\pi^{+}(q)\right\rangle \\
=(p-k)_{\alpha} F\left((p-k)^{2},(p-q)^{2}, P^{2}\right)+\ldots,
\end{array}
$$

- use dispersion relation in (p-k) and (p-q), perform Borel transform, extract matrix element:

$$
\left\langle\pi^{-}(-q) \pi^{+}(p)\right| Q_{1}^{s}\left|D^{0}(p-q)\right\rangle=\frac{-i}{\pi^{2} f_{\pi} f_{D} m_{D}^{2}} \int_{0}^{s_{0}^{\pi}} d s e^{-s / M_{1}^{2}} \int_{m_{c}^{2}}^{s_{0}^{D}} d s^{\prime} e^{\left(m_{D}^{2}-s^{\prime}\right) / M_{2}^{2}} \operatorname{Im}_{s^{\prime}} \operatorname{Im}_{s} F\left(s, s^{\prime}, m_{D}^{2}\right)
$$

- perform LC expansion of $\mathrm{F}\left(\mathrm{s}, \mathrm{s}^{\prime} \mathrm{mD}^{2}\right)$ to get $\mathcal{P}_{\pi \pi}^{s}$
- note that $C_{1} \mathcal{Q}_{1}^{s}+C_{2} \mathcal{Q}_{2}^{s}=2 C_{1} \widetilde{\mathcal{Q}}_{2}^{s}+\left(\frac{C_{1}}{3}+C_{2}\right) \mathcal{Q}_{2}^{s}$ with $\widetilde{\mathcal{Q}}_{2}^{s}=\left({ }_{\bar{s}} \Gamma_{\mu} \frac{\lambda^{a}}{2} s\right)\left(\bar{u} \Gamma^{\mu} \frac{\lambda^{a}}{2} c\right)$

$$
\text { thus } \mathcal{P}_{\pi \pi}^{s}=\frac{2 G_{F}}{\sqrt{2}} C_{1}\left\langle\pi^{+} \pi^{-}\right| \widetilde{\mathcal{Q}}_{2}^{s}\left|D^{0}\right\rangle
$$

Calculating matrix elements

- Evaluate (leading) diagrams contributing to the correlation function
- calculate OPE in terms of known LC DAs

Khodjamirian, NPB 605 (2001) 558;
Khodjamirian, Mannel, Melic, PLB 571 (2003)
Khodjamirian, AAP arXiv: 1706.07780

- analytically continue from the space-like region of $P^{2}=(p-k-q)^{2}$ (with auxiliary 4-momentum $k \neq 0$) to $P^{2}=m_{D}{ }^{2}$, relying on the local quarkhadron duality
- extract absolute value and the phase of matrix element $\mathcal{P}_{\pi \pi}^{s}$
- vary parameters of the calculation to estimate uncertainties

Results of the calculation

$$
\left\langle\pi^{-} \pi^{+}\right| \widetilde{\mathcal{Q}}_{2}^{s}\left|D^{0}\right\rangle=i \frac{\alpha_{s} C_{F} m_{c}^{2}}{8 \pi^{3} m_{D}^{2} f_{D}}\left[\int_{0}^{s_{0}^{\pi}} d s e^{-s / M_{1}^{2}} \int_{u_{0}^{D}}^{1} \frac{d u}{u} e^{\left(m_{D}^{2}-\frac{m_{c}^{2}}{u}\right) / M_{2}^{2}}\right.
$$

(a)

$$
\times\left\{P ^ { 2 } \int _ { 0 } ^ { 1 } d z I (z u P ^ { 2 } , m _ { s } ^ { 2 }) \left(z(1-z) \varphi_{\pi}(u)\right.\right.
$$

$$
\left.+(1-z) \frac{\mu_{\pi}}{2 m_{c}}\left[\left(2 z+\frac{m_{c}^{2}}{u P^{2}}\right) u \phi_{3 \pi}^{p}(u)+\frac{1}{3}\left(2 z-\frac{m_{c}^{2}}{u P^{2}}\right)\left(\phi_{3 \pi}^{\sigma}(u)-\frac{u \phi_{3 \pi}^{\sigma^{\prime}}(u)}{2}\right)\right]\right)
$$

(b)
(c)
$\left.-\frac{\mu_{\pi} m_{c}}{4} \int_{0}^{1} d z I\left(-z \bar{u} m_{c}^{2} / u, m_{s}^{2}\right) \frac{\bar{u}^{2}}{u}\left[\left(1+\frac{3 m_{c}^{2}}{u P^{2}}\right) \phi_{3 \pi}^{p}(1)+\left(1-\frac{5 m_{c}^{2}}{u P^{2}}\right) \frac{\phi_{3 \pi}^{\sigma \prime}(1)}{6}\right]\right\}$
$+\frac{2 \pi^{2}}{3} m_{c}(-\langle\bar{q} q\rangle) \int_{u_{0}^{D}}^{1} \frac{d u}{u^{2}} e^{\left(m_{D}^{2}-\frac{m_{c}^{2}}{u}\right) / M_{2}^{2}}\left\{I\left(u P^{2}, m_{s}^{2}\right)\left(2 \varphi_{\pi}(u)+\frac{\mu_{\pi}}{m_{c}}\left[3 u \phi_{3 \pi}^{p}(u)\right.\right.\right.$

$$
\left.\left.\left.\left.+\frac{\phi_{3 \pi}^{\sigma}(u)}{3}-\frac{u \phi_{3 \pi}^{\sigma \prime}(u)}{6}\right]\right)\right\}\right]_{P^{2} \rightarrow m_{D}^{2}}, \quad I\left(\ell^{2}, m_{q}^{2}\right)=\frac{1}{6}+\int_{0}^{1} d x x(1-x) \ln \left[\frac{m_{q}^{2}-x(1-x) \ell^{2}}{\mu^{2}}\right]
$$

Amplitude predictions

- As a result...

$$
\begin{aligned}
\left\langle\pi^{+} \pi^{-}\right| \widetilde{\mathcal{Q}}_{2}^{s}\left|D^{0}\right\rangle & =(9.50 \pm 1.13) \times 10^{-3} \exp \left[i\left(-97.5^{o} \pm 11.6\right)\right] \mathrm{GeV}^{3} \\
\left\langle K^{+} K^{-}\right| \widetilde{\mathcal{Q}}_{2}^{d}\left|D^{0}\right\rangle & =(13.9 \pm 2.70) \times 10^{-3} \exp \left[i\left(-71.6^{o} \pm 29.5\right)\right] \mathrm{GeV}^{3}
\end{aligned}
$$

- Extract $\mathcal{A}_{\pi \pi}$ and $\mathcal{A}_{K K}$ amplitudes from experimental data

$$
\begin{aligned}
\mathcal{B}\left(D^{0} \rightarrow \pi^{-} \pi^{+}\right) & =(1.407 \pm 0.025) \times 10^{-3} \\
\mathcal{B}\left(D^{0} \rightarrow K^{-} K^{+}\right) & =(3.97 \pm 0.07) \times 10^{-3}
\end{aligned}
$$

$$
\left|\mathcal{A}_{\pi \pi}\right| \simeq \lambda_{s}^{-1}\left|A\left(D \rightarrow \pi^{-} \pi^{+}\right)\right|=(2.10 \pm 0.02)
$$

$$
\left|\mathcal{A}_{K K}\right| \simeq \lambda_{s}^{-1}\left|A\left(D \rightarrow K^{-} K^{+}\right)\right|=(3.80 \pm 0.03)
$$

- Thus, $\quad r_{\pi}=\frac{\left|\mathcal{P}_{\pi \pi}^{s}\right|}{\left|\mathcal{A}_{\pi \pi}\right|}=0.093 \pm 0.011, \quad r_{K}=\frac{\left|\mathcal{P}_{K K}^{d}\right|}{\left|\mathcal{A}_{K K}\right|}=0.075 \pm 0.015$

Predictions for the Acp

- Assuming the phases of $r_{\pi \pi(K K)}$ are given by the phases of $\mathcal{P}_{\pi \pi(K K)}^{s(d)}$

$$
\begin{aligned}
a_{C P}^{d i r}\left(\pi^{-} \pi^{+}\right) & =-0.011 \pm 0.001 \% \\
a_{C P}^{d i r}\left(K^{-} K^{+}\right) & =0.009 \pm 0.002 \% \\
\Delta a_{C P}^{d i r} & =0.020 \pm 0.003 \%
\end{aligned}
$$

Khodjamirian, AAP arXiv: 1706.07780

Things to take home

- The magnitude of hadronic MEs defining CPV are computed

$$
r_{\pi}=\frac{\left|\mathcal{P}_{\pi}^{s}\right|}{\left|\mathcal{A}_{\pi \pi}\right|}=0.093 \pm 0.011, \quad r_{K}=\frac{\left|\mathcal{P}_{K K}^{d}\right|}{\left|\mathcal{A}_{K K}\right|}=0.075 \pm 0.015
$$

- The magnitude of direct CPV asymmetry in $D \rightarrow \pi^{+} \pi^{-}$and $D \rightarrow K^{+} K^{-}$ can be predicted from the calculation of the relevant hadronic matrix elements from LCSRs

$$
\Delta a_{C P}^{d i r}=0.020 \pm 0.003 \%
$$

- No topological amplitude decomposition was used (note that OPE hierarchy sorts out the leading penguin-type diagrams)
- The strong phase difference is not yet reliably accessible: duality violations are not easily identifiable (e.g. broad scalar resonances influencing hadronic matrix elements)

Parameters of the calculation

- Light cone distribution amplitudes

$$
\begin{aligned}
\varphi_{\pi}(u) & =6 u \bar{u}\left(1+a_{2}^{\pi} C_{2}^{3 / 2}(u-\bar{u})+a_{4}^{\pi} C_{4}^{3 / 2}(u-\bar{u})\right) \\
\phi_{3 \pi}^{p}(u) & =1+30 \frac{f_{3 \pi}}{\mu_{\pi} f_{\pi}} C_{2}^{1 / 2}(u-\bar{u})-3 \frac{f_{3 \pi} \omega_{3 \pi}}{\mu_{\pi} f_{\pi}} C_{4}^{1 / 2}(u-\bar{u}), \\
\phi_{3 \pi}^{\sigma}(u) & =6 u(1-u)\left(1+5 \frac{f_{3 \pi}}{\mu_{\pi} f_{\pi}}\left(1-\frac{\omega_{3 \pi}}{10}\right) C_{2}^{3 / 2}(u-\bar{u})\right) \\
\varphi_{K}(u) & =6 u \bar{u}\left(1+a_{1}^{K} C_{1}^{3 / 2}(u-\bar{u})+a_{2}^{K} C_{2}^{3 / 2}(u-\bar{u})\right)
\end{aligned}
$$

Parameters of the calculation

Parameter values and references	Parameter rescaled to $\mu=1.5 \mathrm{GeV}$
$\begin{gathered} \alpha_{s}\left(m_{Z}\right)=0.1181 \pm 0.0011 \\ \bar{m}_{c}\left(\bar{m}_{c}\right)=1.27 \pm 0.03 \mathrm{GeV}[6] \\ \bar{m}_{s}(2 \mathrm{GeV})=96_{-4}^{+8} \mathrm{MeV}[6] \\ \langle\bar{q} q\rangle(2 \mathrm{GeV})=\left(-276_{-10}^{+12} \mathrm{MeV}\right)^{3}[6] \\ \langle\bar{s} s\rangle=(0.8 \pm 0.3)\langle\bar{q} q\rangle \quad[21] \end{gathered}$	$\begin{gathered} 0.351 \\ 1.19 \mathrm{GeV} \\ 105 \mathrm{MeV} \\ (-268 \mathrm{MeV})^{3} \\ (-249 \mathrm{MeV})^{3} \end{gathered}$
$\begin{gather*} a_{2}^{\pi}(1 \mathrm{GeV})=0.17 \pm 0.08 \\ a_{4}^{\pi}(1 \mathrm{GeV})=0.06 \pm 0.10 \\ \mu_{\pi}(2 \mathrm{GeV})=2.48 \pm 0.30 \mathrm{GeV} \tag{6}\\ f_{3 \pi}(1 \mathrm{GeV})=0.0045 \pm 0.015 \mathrm{GeV}^{2} \tag{19}\\ \omega_{3 \pi}(1 \mathrm{GeV})=-1.5 \pm 0.7 \quad[19] \end{gather*}$	$\begin{gathered} 0.14 \\ 0.045 \\ 2.26 \mathrm{GeV} \\ 0.0036 \mathrm{GeV}^{2} \\ -1.1 \end{gathered}$
$\begin{gather*} a_{1}^{K}(1 \mathrm{GeV})=0.10 \pm 0.04 \quad[23] \tag{23}\\ a_{2}^{K}(1 \mathrm{GeV})=0.25 \pm 0.15 \quad[19] \tag{19}\\ \mu_{K}(2 \mathrm{GeV})=2.47_{-0.10}^{+0.19} \mathrm{GeV} \tag{6}\\ f_{3 K}=f_{3 \pi} \\ \omega_{3 K}(1 \mathrm{GeV})=-1.2 \pm 0.7[19] \\ \lambda_{3 K}(1 \mathrm{GeV})=1.6 \pm 0.4 \quad[19] \end{gather*}$	$\begin{gathered} 0.09 \\ 0.21 \\ 2.25 \\ 0.0036 \mathrm{GeV}^{2} \\ -0.99 \\ 1.5 \end{gathered}$

