Extracting neutrino oscillation parameters using a simultaneous fit of the $\nu_{\rm e}$ appearance and ν_{μ} disappearance data in the NOvA experiment

Prabhjot Singh, University of Delhi, India

On Behalf of the NOvA Collaboration

DPF 2017

Fermilab

August 03, 2017

Current questions in neutrino physics

- Ordering of the neutrino masses: Normal or Inverted hierarchies?
- CP violation: do the neutrinos and anti-neutrinos oscillate differently?
- θ_{23} angle: is the mixing between ν_{μ} and ν_{τ} maximal or not?

Introduction to the NOvA Experiment

- NOvA (NuMI Off-axis ν_e Appearance) is a two detector, long baseline, neutrino oscillation experiment
 - NuMI (Neutrinos at Main Injector) beam is 97.5% ν_{μ}
 - NOvA is 14.6 mrad off-axis from the NuMI beam, observed energy spectrum peaks at 2 GeV peak
 - Near detector, ND, on-site at Fermilab.
 - Far detector, FD, at Ash River, MN, 810 km from the target.
- Oscillation channels
 - ullet $u_{\mu}
 ightarrow
 u_{\mu}$ disappearance
 - ullet $u_{\mu}
 ightarrow
 u_{e}$ appearance
 - Anti-neutrino modes

NOvA Detectors

- NOvA detectors are functionally identical
 - Polyvinyl chloride (PVC) and low Z scintillator detectors.
 - NOvA cells are arranged in alternating horizontal and vertical planes for 3D tracking.
- The ND is used to measure the beam before oscillations and the FD measures the oscillated spectrum.

NuMI (Neutrinos at Main Injector) beam

- A beam of high energy protons from the Main Injector are impinge on a fixed graphite target producing pions and kaons.
- Magnetic horns selects particles of the desired charge & momentum and focus them into a narrow beam.
- Charged pions and kaons spontaneously decay into muons and neutrinos.
- Rock after absorber filters out muons neutrinos produced in decay pipe.
- We are left with the neutrino beam.

- ν_{μ} CC is the signal for the ν_{μ} $(\bar{\nu}_{\mu})$ disappearance analysis.
- \bullet ν_e CC is the signal for the ν_e $(\bar{\nu}_e)$ appearance analysis.
- NC is a background in above analyses.

Extrapolation: ND Role

- ND spectra are used to predict the signal and backgrounds in the FD.
- Both $\nu_{\mu} \to \nu_{\mu}$ disappearance and $\nu_{\mu} \to \nu_{e}$ appearance analyses use ν_{μ} 's in the ND.
- The P($\nu_{\alpha} \to \nu_{\beta}$) and the simulated spectra from ND and FD are used in the form of Far over Near, F/N, ratios to make the FD predictions.

Extrapolation: Far detector signal prediction

- \bullet The reconstructed ND ν_{μ} CC energy spectrum is used to correct the FD simulated prediction.
- True energy distribution is corrected so that the reconstructed data & MC agree at the ND.
- The FD and ND MC spectra along with the oscillation probability for the $\nu_{\mu} \to \nu_{\mu}$ disappearance and $\nu_{\mu} \to \nu_{e}$ appearance are used to extrapolate corrected ND true spectra to the FD.
- The extrapolated true energy distribution is converted to the reconstructed energy distribution by using $E_{true} o E_{reco}$ distribution.

Decomposition and Extrapolation of Backgrounds in ν_e appearance

- We use deep learning to seperate the signal and backgrounds into 3 bins of ID confidence from least ν_e like to the most ν_e like.
- The ν_e selected beam ν_e CC, ν_μ CC and NC interactions in the ND are backgrounds in the FD.

- The ND spectrum is decomposed into NC, beam ν_e CC and ν_μ CC.
- Each component is extrapolated from the ND to the FD for background predictions in the FD.

See talk:

Deep Learning Applications in the NOvA Experiment
- Fernanda Psihas

Extrapolation: Systematic uncertainties

- Systematic uncertainties in the analysis are extrapolated from the ND to the FD using the same extrapolation technique.
- The ND Data is replaced by the ND prediction under a systematic shift.
- The corrected ND true energy spectra is extrapolated to the FD.

10 / 20

Systematic uncertainties in the ν_{μ} disappearance and $\nu_{\rm e}$ appearance analyses

- Systematic uncertainties are included as nuisance parameters in the fit for all analyses.
- The functionally identical near and far detectors allow most uncertainties to cancel when predicting the FD spectrum.

- In the disappearance analysis, uncertainties due to detector response are dominant but smaller than the statistical uncertainties.
- In the appearance analysis, cross section uncertainties are important for signal, but small compared to statistical uncertainties.

u_{μ} fit to the disappearance data

- Disappearance data is fit for the Δm^2_{32} and $\sin^2 \theta_{23}$ parameters.
- Expected 473 events, observe 78 events, clear evidence of neutrino oscillations.
- Best fit in the Normal Hierarchy: $\Delta m_{32}^2 = (2.67 \pm 0.11) \times 10^3 \text{ eV}^2$ $\sin^2 \theta_{23} = 0.404^{+0.030}_{-0.020} \text{ or } 0.624^{+0.022}_{-0.030}$
- -0.030
- Maximal-mixing disfavoured at 2.6 σ .

ν_e fit to the appearance data

- Appearance data is fit for the $\sin^2 \theta_{23}$ and δ_{CP} parameters.
- Constrain parameters

$$\bullet \ \sin^2 2\theta_{13} = 0.085 \, \pm \, 0.005,$$

•
$$\Delta m_{32}^2 = +2.44 \pm 0.06$$
 (NH)
= -2.49 ± 0.06 (IH)

• Observe 33 events in the FD, $> 8\sigma$ significance of ν_e appearance.

Simultaneous fit of the disappearance and appearance data

- The constraints on the oscillation parameters can be improved by combining NOvA's ν_e appearance data with its ν_μ disappearance data.
- Appearance and disappearance data are simultaneous fit for the $\sin^2\theta_{23}$, δ_{CP} and Δm_{32}^2 parameters.
- $\sin^2 2\theta_{13} = 0.085 \pm 0.005$ is a constraint from the reactor experiments.
- Two statistically degenerate best fit points are in Normal Hierarchy:

$$\sin^2 \theta_{23} = 0.404, \ \delta_{CP} = 1.48\pi \ \text{and} \ \sin^2 \theta_{23} = 0.623, \ \delta_{CP} = 0.74\pi$$

• Inverted Hierarchy with lower θ_{23} octant for all values of δ_{CP} is rejected at >93% CE.

Summary

- NOvA is a two detector, long baseline, accelerator based neutrino oscillation experiment.
- The Near Detector measures NuMI beam before oscillations and helps in signal and background predictions in the Far Detector.
- Having two functionally identical detectors is advantageous for cancelling uncertainties that are common between the two detectors.
- Best fit to ν_{μ} disappearance data is a non-maximal value of θ_{23} , maximal mixing disfavoured at 2.6 σ .
- A simultaneous fit of the disappearance and appearance data rejects Inverted Hierarchy with lower θ_{23} octant for all values of δ_{CP} at >93% CL.
- Updated oscillation results soon with 50% more data.

Backup

Extrapolation: ND Spectra

- The P($\nu_{\alpha} \rightarrow \nu_{\beta}$) depends on E_{true} , but detectors measure E_{reco} .
- Detectors/reconstruction have different sensitivities to different processes, which have different $E_{true} \leftrightarrow E_{reco}$.

- The reconstructed ND ν_{μ} CC energy spectrum is used to correct the FD simulated prediction.
- True energy distribution is corrected so that reconstructed data & MC agree at the ND.

NOvA Analysis

Extrapolation: Far over Near ratios

• The FD and ND MC spectra along with the oscillation probability for the ν_{μ} ($\bar{\nu}_{\mu}$) \rightarrow ν_{μ} ($\bar{\nu}_{\mu}$) disappearance and ν_{μ} ($\bar{\nu}_{\mu}$) \rightarrow ν_{e} ($\bar{\nu}_{e}$) appearance are used to extrapolate corrected ND true spectra to the FD.

Extrapolation: all XS uncertainties

- These plots show the effect of cross-section uncertainty with and without extrapolation.
- The cross-section uncertainty is reduced when we use extrapolation method.

Extrapolation: all ν_{μ} uncertainties

- ullet These plots show the effect of all u_{μ} uncertainties with and without extrapolation.
- The uncertainties are reduced when we use extrapolation method.