

Mu2e Magnetic Field Mapping

Brian Pollack, on behalf of the Mu2e Collaboration Northwestern University 8/2/17

Mu2e Processes

Decay-in-orbit (Background)

Uncertainty in field accuracy can shift momentum scale by tens of keV/c. Better field accuracy \rightarrow better sensitivity!

The Mu2e Experiment Mu2e œ **Proton Beam Detector Solenoid Production Solenoid Transport Solenoid** is see Production Target Calorimeter Tracker Muon Stopping Target

1. Proton collides with production target.

- 1. Proton collides with production target.
- 2. Pions back-scatter into transport solenoid.

- 1. Proton collides with production target.
- 2. Pions back-scatter into transport solenoid.
- 3. Muons and pions transported to detector solenoid.

- 1. Proton collides with production target.
- 2. Pions back-scatter into transport solenoid.
- 3. Muons and pions transported to detector solenoid.
- 4. Muons are captured at target.

- 1. Proton collides with production target.
- 2. Pions back-scatter into transport solenoid.
- 3. Muons and pions transported to detector solenoid.
- 4. Muons are captured at target.
- 5. Outgoing electrons pass through detector system.

2

1.5

Tesla

0.5

Detector Solenoid

End of Transport Solenoid

and Collimator

Detector Solenoid

Detector Solenoid

Detector Solenoid

6

Solenoid Field Mapper

- Field Mapper will take a sparse set of magnetic field measurements.
 - Very demanding hardware requirements! (hall probe calibration, laser alignment, etc.)
- A continuous field will be reconstructed.
- Measurement errors must be minimized and quantified.
 - ★ Reconstructed field must be accurate to 1x10⁻⁴ w.r.t. true.

Need ~1 G accuracy for 1 T field.

Field mapper in solenoid

How do we turn discrete measurements into a continuous field?

***** Maxwell's equations for the fiducial region:

$$\vec{\nabla} \cdot \vec{B} = 0$$
 and $\vec{\nabla} \times \vec{B} = 0$

***** The B-field can be expressed as gradient of scalar potential:

$$\vec{B} = -\vec{\nabla}\Phi$$

 ★ In cylindrical coordinates, a series solution for Φ using modified Bessel's functions:

$$\Phi = \sum_{n,m} A_{nm} e^{\pm in\phi} e^{\pm ik_{nm}z} I_n(k_{nm}\rho)$$

- ***** Will measure field components B_{ρ} and B_{z} and B_{ϕ} , <u>not</u> Φ .
- ***** Measurements determine coefficients through a χ^2 fit.

Analytical Model

Derived from solutions to Maxwell's Equations for a generic solenoid:

$$B_{r} = \sum_{n,m} \cos(n\phi + \delta_{n})k_{nm}I'_{n}(k_{nm}r)[A_{nm}\cos(k_{nm}z) + B_{nm}\sin(-k_{nm}z)]$$

$$B_{z} = \sum_{n,m} -\cos(n\phi + \delta_{n})k_{nm}I_{n}(k_{nm}r)[A_{nm}\sin(k_{nm}z) + B_{nm}\cos(-k_{nm}z)]$$

$$B_{\phi} = \sum_{n,m} -\frac{n}{r}\sin(n\phi + \delta_{n})I_{n}(k_{nm}r)[A_{nm}\cos(k_{nm}z) + B_{nm}\sin(-k_{nm}z)]$$

- ***** All field components fit simultaneously.
- ★ Fit expanded to ~200 terms, ~400 free parameters.

 Black dots: Sim data points
 -Agreement with simulation at R<800 mm is excellent.</td>

 Green mesh: Fit
 -Level of disagreement is still on the order of 10⁻⁵ - 10⁻⁶

 Surface: Residuals
 (~0.01 Gauss)

 (Data-Fit, in units of Gauss)
 -Extrapolation of field is accurate within ~5 Gauss for

 800<R<900 mm</td>

- Hall probes will be subject to systematic errors based on positional and measurement accuracy.
 - Requirements for Detector Solenoid:
 - <u>Measurement</u>: $\sigma |\mathbf{B}| / |\mathbf{B}| \le 0.01\%$ (Shown in next slide)
 - *Position*: σ position ≤ 1mm
 - <u>Orientation</u>: $\sigma \phi \le 0.1$ mrad
- These effects will translate into slight mis-measurements, which in turn will affect field map.

***** Procedure:

- Modify hall probe measurements with systematic errors.
- Fit function to modified probe values.
- Compare resulting map to **true** field.

- A scale factor representing a miscalibration of each probe measurement, satisfying B_{measured} is within 0.01% of B_{true}.
 - e.g., $B \rightarrow B^*(1+\epsilon)$ where -0.0001<" ϵ "<0.0001
 - Represents correlated systematic effect, not random error

than simple interpolation!

TERN STERN JUE SULL Aligns days Aligns day

Simulation of systematic errors re-run 20 times, results compiled:

The spread of expected residuals is ~0.25 G, which corresponds to

a relative error better than 5x10⁻⁵.

- All data manipulation, fitting, and visualization software written in Python with popular open source packages:
 - Numpy, Scipy, pandas, Imfit, matplotlib, plotly...
 - Easy to integrate results into any software framework.
- ***** Minimization time is good:
 - ~500 parameter fit run over ~20,000 data points takes ~30 min on an i7 laptop.
 - Using <u>numba</u> (with <u>CUDA</u> for GPU acceleration), time reduced by 2x-10x using current-gen GPU.

Summary

- Mu2e will improve current CLFV sensitivity by over 4 orders of magnitude.
 - Great discovery potential!
- Demanding performance requires precise and accurate knowledge of magnetic field.
 - Novel hardware and software solutions needed.
- Leveraging magnetostatics and modern-day computing, semi-analytic fitting technique can produce continuous, accurate maps, even in non-ideal scenarios.

Charged Lepton Flavor Violation

- Lepton Flavor Violation (LFV) is a well known and defining phenomena in the neutrino sector.
- But what about Charged Lepton Flavor
 Violation (CLFV)?
 - Has not yet been detected → only limits have been placed.
 - Greatly suppressed in SM (BR < 10^{-50}).
- Mu2e is designed to probe CLFV with 10,000 times the sensitivity of previous experiments!
- If a single signal event is observed, it will be a clear sign of New Physics.

Neutrinos don't conserve flavor...

...do charged leptons?

The Experiment Goal

Key Metric :
$$R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$$
. (Rate of neutrinoless conversion)
(Rate of ordinary muon capture)

Model Independent Effective Lagrangian:

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu\nu} e_{L} F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{L} \gamma_{\mu} e_{L} \left(\sum_{q=u,d} \bar{q}_{L} \gamma^{\mu} q_{L}\right)$$
Magnetic moment interactions Four-fermion interactions

- $\Lambda :$ New Physics mass scale
- к: Dimensionless relative contribution scale

Mu2e will be sensitive to new physics scales up to ~10,000 TeV, and to both types of CLFV operators.

André de Gouvêa, NU

Mu2e

Fit Results (Sparse)

-Agreement with simulation at R<800 mm is excellent.

-Level of disagreement is still on the order of 10⁻⁵ - 10⁻⁶ (~0.01 Gauss)

-Extrapolation of field is accurate within ~5 Gauss for 800<R<900 mm

Position Systematic

- Each probe position is shifted by an offset of ~±1 mm in the radial direction.
- As, expected, greatest effects are in regions of high magnetic gradient w.r.t radial position.
- Bz vs R and Z for DS Z>4200, Z<13900, Phi==0.46 14000 > 5 12000 3 2 (mm) 10000' (mm) N Data-Fit (G 1 Z (mm) 0 -1 -2 6000 -3 -4 4000 -800 -600 -400 -200 < -5 0 200 400 600 800 R (mm) Fit compared to probe

• Minimal effect in tracking region.

measurements

Fit compared to true field

Orientation Systematic

- ★ Each probe is rotated by an angle of ~0.1 mrads in the R-Z plane
- This mainly impacts the value of Br, as the Bz component is much larger.
- ***** This mixing should always reduce the Z-component and increase the R-component.

Field Mapping System (FMS) Team

- STERN HUESCHART HUESCHART
- Sandor Feher L3 Manager, Fermilab TD/MSD Measurements and Analysis Group
 Leader, Mu2e Detector Solenoid (DS) L3 Manager
- ★ Michael Lamm L3 CAM, Mu2e Solenoid System L2 manager
- **Argonne National Laboratory team:**
 - Rich Talaga and Robert G. Wagner Senior Physicists
 - James Grudzinski and Jeffrey L. White Senior Mechanical Engineers
 - Allen Zhao Motion Control Expert, Senior Engineer
- ★ Fermilab team:
 - Luciano Elementi and Charles Orozco System Engineers
 - Horst Friedsam Geodicist
 - Thomas Strauss Associate Scientist
 - Jerzy Nogiec Computer Scientist
- ***** Northwestern University:
 - Michael Schmitt Physics Professor
 - Brian Pollack HEP Research Fellow
 - Thoth Gunter Graduate Student