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Mu2e Processes
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Reconstruction
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Uncertainty in field accuracy can shift momentum scale by tens of keV/c. 
Better field accuracy → better sensitivity!

ΔB ≈ 1 G → Δp ≈ 10 keV/c
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The Mu2e Experiment

4

1. Proton collides with production target.
2. Pions back-scatter into transport solenoid.



The Mu2e Experiment

4

1. Proton collides with production target.
2. Pions back-scatter into transport solenoid.
3. Muons and pions transported to detector solenoid.



The Mu2e Experiment

4

1. Proton collides with production target.
2. Pions back-scatter into transport solenoid.
3. Muons and pions transported to detector solenoid.
4. Muons are captured at target.



The Mu2e Experiment
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1. Proton collides with production target.
2. Pions back-scatter into transport solenoid.
3. Muons and pions transported to detector solenoid.
4. Muons are captured at target.
5. Outgoing electrons pass through detector system.
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The Magnetic Field

5

Detector Solenoid
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The Magnetic Field
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Detector Solenoid

Gradient Region

2 to 1 T
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The Magnetic Field
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Detector Solenoid

Uniform Region, 1T

Strictest requirements 
on field accuracy
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The Magnetic Field
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Detector Solenoid

~4m < Z < ~13m

R<80 cm

Region mapped in upcoming slides
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Solenoid Field Mapper
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Five Hall Probes

Field mapper in solenoid

★ Field Mapper will take a 
sparse set of magnetic field 
measurements. 

• Very demanding hardware 
requirements!                        
(hall probe calibration, laser 
alignment, etc.) 

★ A continuous field will be 
reconstructed. 

★ Measurement errors must be 
minimized and quantified. 

★ Reconstructed field must be 
accurate to 1x10-4 w.r.t. true.

Need ~1 G accuracy for 1 T field.
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Solenoid Field Mapper

Hall Probes

How do we turn discrete measurements into a continuous field?



Maxwell`s Equations
★ Maxwell’s equations for the fiducial region: 

★ The B-field can be expressed as gradient of scalar potential: 

★ In cylindrical coordinates, a series solution for Φ using modified 
Bessel’s functions: 

★ Will measure field components Bρ and Bz and Bφ,  not  Φ.    

★ Measurements determine coefficients through a χ2 fit. 
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Analytical Model
★ Derived from solutions to Maxwell’s Equations for a 

generic solenoid:
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★ All field components fit simultaneously. 
★ Fit expanded to ~200 terms, ~400 free parameters.
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Black dots: Sim data points 
Green mesh: Fit 
Surface: Residuals 
(Data-Fit, in units of Gauss)

Fit Results

Bz (2D slice)

-Agreement with simulation at R<800 mm is excellent. 
-Level of disagreement is still on the order of 10-5 - 10-6  

(~0.01 Gauss) 
-Extrapolation of field is accurate within ~5 Gauss for 
800<R<900 mm

2D Slice Range: 
4 m ≤ Z ≤ 13 m 
R ≤ 80 cm

http://pollackscience.com/mu2e_plots/halltoy_Mau10_800mm_long/Bz_RZ_Z4200_Z13900_Phi0.46_fit.html


Systematic Errors
★ Hall probes will be subject to systematic errors based on 

positional and measurement accuracy. 
• Requirements for Detector Solenoid: 

✦ Measurement: σ|B|/|B| ≤ 0.01%  (Shown in next slide) 
✦ Position: σ position ≤ 1mm 
✦ Orientation: σφ ≤ 0.1 mrad 

★ These effects will translate into slight mis-measurements, 
which in turn will affect field map. 

★ Procedure: 
• Modify hall probe measurements with systematic errors. 
• Fit function to modified probe values. 
• Compare resulting map to true field.
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Measurement Systematic
★ A scale factor representing a miscalibration of each probe measurement, 

satisfying Bmeasured is within 0.01% of Btrue. 
• e.g., B → B*(1+ε) where -0.0001<“ε”<0.0001  
• Represents correlated systematic effect, not random error
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Bz Residuals 
Fit vs Miscalibrated Probes

Bz Residuals 
Fit vs True Field

Fit function resists miscalibration, more accurate 
than simple interpolation!



RMS of Residuals
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The spread of expected residuals is ~0.25 G, which corresponds to 
a relative error better than 5x10-5.

Simulation of systematic errors re-run 20 times, results compiled:



Software Implementation

★ All data manipulation, fitting, and visualization software 
written in Python with popular open source packages: 

• Numpy, Scipy, pandas, lmfit, matplotlib, plotly… 
• Easy to integrate results into any software framework. 

★ Minimization time is good: 
• ~500 parameter fit run over ~20,000 data points takes ~30 min on 

an i7 laptop. 
• Using numba (with CUDA for GPU acceleration), time reduced by 

2x-10x using current-gen GPU.
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http://www.numpy.org/
https://www.scipy.org/
http://pandas.pydata.org/
https://lmfit.github.io/lmfit-py/
https://matplotlib.org/
https://plot.ly/
https://numba.pydata.org/
https://developer.nvidia.com/cuda-zone


Summary

★ Mu2e will improve current CLFV sensitivity by over 4 
orders of magnitude. 

• Great discovery potential! 
★ Demanding performance requires precise and accurate 

knowledge of magnetic field. 
• Novel hardware and software solutions needed. 

★ Leveraging magnetostatics and modern-day computing, 
semi-analytic fitting technique can produce continuous, 
accurate maps, even in non-ideal scenarios.
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Backup

16



Charged Lepton Flavor Violation

★ Lepton Flavor Violation (LFV) is a well known 
and defining phenomena in the neutrino 
sector. 

★ But what about Charged Lepton Flavor 
Violation (CLFV)? 

• Has not yet been detected → only limits have been 
placed. 

• Greatly suppressed in SM (BR < 10-50). 
★ Mu2e is designed to probe CLFV with 10,000 

times the sensitivity of previous experiments! 
★ If a single signal event is observed, it will be a 

clear sign of New Physics.
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Neutrinos don’t 
conserve flavor…

…do charged leptons?

?
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The Experiment Goal
(Rate of neutrinoless conversion)

Key Metric : 
(Rate of ordinary muon capture)

Model Independent Effective Lagrangian:

Magnetic moment 
interactions

Four-fermion 
interactions

Λ: New Physics mass scale
κ: Dimensionless relative contribution scale

André de Gouvêa, NU

Mu2e will be sensitive to new physics scales 
up to ~10,000 TeV, and to both types of CLFV 
operators.
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Black dots: Data points 
Green mesh: Fit 
Surface: Residuals 
(Data-Fit, in units of Gauss)

This is an example 
for a single 2D slice 
of the magnetic 
field.  All slices and 
components are fit 
simultaneously.

Fit Results (Sparse)

http://pollackscience.com/mu2e_plots/halltoy_Mau10_800mm_long/Bz_RZ_Z4200_Z13900_Phi0.46_fit.html
http://pollackscience.com/mu2e_plots/halltoy_Mau10_800mm_long/Bphi_RZ_Z4200_Z13900_Phi0.46_fit.html
http://pollackscience.com/mu2e_plots/halltoy_Mau10_800mm_long/Br_RZ_Z4200_Z13900_Phi0.46_fit.html


Map Results (Dense)
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-Agreement with simulation at R<800 mm is excellent. 
-Level of disagreement is still on the order of 10-5 - 10-6  (~0.01 Gauss) 
-Extrapolation of field is accurate within ~5 Gauss for 800<R<900 mm

Residual compared to probes 
(sparse sample).

Residual compared to dense sample.



Position Systematic
★ Each probe position is shifted by an offset of ~±1 mm in the radial direction. 
★ As, expected, greatest effects  are in regions of high magnetic gradient w.r.t 

radial position. 
• Minimal effect in tracking region.
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Fit compared to probe 
measurements 

Fit compared to true field
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★ Each probe is rotated by an angle of ~0.1 mrads in the R-Z plane 
• This mainly impacts the value of Br, as the Bz component is much larger. 

★ This mixing should always reduce the Z-component and increase the R-component.

Orientation Systematic

Fit compared to probe 
measurements 

Fit compared to true field



Field Mapping System (FMS) Team
★ Sandor Feher — L3 Manager, Fermilab – TD/MSD Measurements and Analysis Group 

Leader, Mu2e Detector Solenoid (DS) L3 Manager  
★ Michael Lamm — L3 CAM, Mu2e Solenoid System L2 manager  
★ Argonne National Laboratory team:  

• Rich Talaga and Robert G. Wagner — Senior Physicists  
• James Grudzinski and Jeffrey L. White — Senior Mechanical Engineers  

• Allen Zhao — Motion Control Expert, Senior Engineer 
★ Fermilab team:  

• Luciano Elementi and Charles Orozco — System Engineers  

• Horst Friedsam — Geodicist 

• Thomas Strauss — Associate Scientist  
• Jerzy Nogiec — Computer Scientist 

★ Northwestern University:  

• Michael Schmitt — Physics Professor  
• Brian Pollack — HEP Research Fellow  

• Thoth Gunter — Graduate Student 23


