Normalizing to the Number

 of Stopped Muons in the Mu2e ExperimentNam Tran, for the Mu2e Collaboration

Outline

- Overview
- Conceptual design
- Simulation results
- Outlook

Overview

- Mu2e is going to probe μ-e conversion in an muonic atom at an unprecedented sensitivity

The number of stopped muons

- Mu2e is going to probe μ-e conversion in an muonic atom at an unprecedented sensitivity

$$
\text { S.E.S. }\left(\mu^{-}+\mathrm{Al} \rightarrow e^{-}+\mathrm{Al}\right)=3.0 \times 10^{-17} \sim \frac{1}{N_{\mu}}
$$

- Number of stopped muons N_{μ}
- designed value $N_{\mu}=6.8 \times 10^{17}$
- need to measure in the real experiment to 10% precision

Pulsed proton beam

- 6×10^{20} protons delivered in 3 years
- Proton pulses are 1695 ns apart
- 3.1×10^{7} protons per pulse
- Conversion electron search window: 700-1600 ns

π, μ arrives at the muon stopping target

Conceptual design

- Measuring observable(s) directly associated with a stopped muon
- characteristic muonic X-rays
- prompt gamma rays
- decay-in-orbit electrons
- Obvious issues due to Mu2e beam characteristics:
- very high rate
- radiation damage

Xrays and gammas

Xrays and gammas

Transition	$E(k e V)$	$\mathbf{I}(\%)$
$2 p \rightarrow \mathbf{1 s}$	346.83	79.8
$3 d \rightarrow \mathbf{2 p}$	66.11	67.6
$3 p \rightarrow \mathbf{1 s}$	412.87	7.6
$4 p \rightarrow \mathbf{1 s}$	435.96	4.9

Muonic X-ray from AI prompt with atomic capture

Xrays and gammas

Transition	E(keV)	$1(\%)$
$2 p \rightarrow 1 s$	346.83	79.8
$3 d \rightarrow 2 p$	66.11	67.6
$3 p \rightarrow 1 s$	412.87	7.6
$4 p \rightarrow 1 s$	435.96	4.9

Muonic X-ray from AI prompt with atomic capture

Xrays and gammas

Transition	E(keV)	$I(\%)$
$2 p \rightarrow 1 s$	346.83	79.8
$3 d \rightarrow 2 p$	66.11	67.6
$3 p \rightarrow 1 s$	412.87	7.6
$4 p \rightarrow 1 s$	435.96	4.9

Main gamma of interest, prompt with nuclear capture

Energy	1808.7 keV
Lifetime	476 fs
Intensity	51%

Muonic X-ray from AI prompt with atomic capture

Conceptual design

- Collimators to define the view of the stopping target
- Minimize that rate

Detector candidates

- High-purity Ge (HPGe):
- excellent energy resolution (<2 keV)
- slow
- susceptible to radiation damage
- LaBr3:
- worse energy resolution
- very fast
- radiation hard

Simulation

- Mu2e's Geant4-based software with full geometry
- 8×10^{11} protons on target simulated in total
- Observed particles at several virtual detector planes downstream of the muon stopping target

Measurement window

- Timing of hits just upstream of the detectors

Particle types

Hit rate estimation

- 160 kHz instantaneous rate on the HPGe/LaBr3 detectors
- nominal 3.1×10^{7} protons per pulse
- 1.7 нs interval between pulses
- Commercial HPGe's performance falls off around 10 kHz
- Purdue group achieved 2 keV resolution, 3.2% event loss at 150 kHz
- Also have experience with annealing
- An absorber is still needed upstream of these detectors

Performance test of Ge detectors

- A beamtest at ELBE
(Dresden) is scheduled in early August
- High flux pulsed gamma beam
- driven by a continuouswave electron beam
- mimic the expected rate ~ 160 kHz
- Detector performance
 after a flash

Summary

- Counting number of stopped muons is important for Mu2e
- Baseline design: use a HPGe detector to measure prompt X-rays and gammas.
- need to solve problem of high rate and radiation damage
- Simulation work and beam test are ongoing to finalize the design.

Haoyu Wang, Ph.D. Candidate wang1328@purdue.edu
4. Deadtime and Event Loss Issue at Continuous Mode

Event Loss Fraction $=1-\frac{\text { Registered Events }}{\text { Pileup Events }+ \text { Detected Events (-Cosmic Events) }}$

For rates $\sim 100 \mathrm{kHz}$, the DMA algorithm is able to keep:
(1) Dynamic range overflow event loss $<5.8 \times 10^{-3}$
(2) Pile-up event loses to $<2.6 \times 10^{-2}$
in both $\sim 100 \%$ n-type and p-type HPGe detectors.

HPGe high gain energy spectra, all Al runs

$$
347 \mathrm{keV}(\sigma=0.884 \mathrm{keV}) \quad 844 \mathrm{keV}(\sigma=0.76 \mathrm{keV}) \quad 1809 \mathrm{keV}(\sigma=1.8 \mathrm{keV})
$$

Incident on the det.:

S/B	$112.9 / 289.2=0.39$	$6.7 / 113.7=0.06$	$56.9 / 118.7=0.48$
S/B (prompt)	$100.1 / 10.0=10.1$	$5.9 / 3.9=1.5$	$50.5 / 4.1=12.3$
S/B (semi-prompt)	$12.3 / 1.0=11.9$	$0.73 / 0.41=1.79$	$6.2 / 0.43=14.5$

