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* MiniBooNE saw a ~30 ve-like excess between 200 and 600 MeV
* MiniBooNE’s neutrino result is in tension with global 3+1 model fit

e MiniBooNE e MicroBooNE

» Significant fraction of background » Same beam and similar baseline

from y/e~ mis-1D » LArTPC gives better y/e~ separation,

» Systematic error = statistical error better background rejection
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.101802

N

e TG A LA

Boostervbeam ol mme—= =

‘MicroBeoNE, SBN progra-(l\“ ¢ Booster
p- '\Q\\
R potonenergy: 8°Ge¥

S e

pRas
DUNE v beam
“sqplanned)

e Micro Booster Neutrino Experiment
e 85 ton (active) Liquid Argon Time Projection Chamber
e Located in the Fermilab Booster Neutrino Beam

® V,—>Ve appearance experiment

* >95% detector uptime

* 6.1x10°° POT on tape in the first 18 months of
running, of proposed 6.6x10°° POT in three years
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The MicroBooNE Detector
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Collection “Design and Construction of the MicroBooNE Detector”

Induction IINST 12, P02017 (2017)
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http://iopscience.iop.org/article/10.1088/1748-0221/12/02/P02017

A Few Words About Deep Learning HBooNE __

e For us, deep learning = convolutional neural networks (CNNs)

* CNNs have been developed primarily for image analysis; we apply them

MicroBooNE event displays

» For more, see T. Wongjirad’s talk from Tuesday (here)
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Example of CNN classification, from “ImageNet
Classification with Deep CNNs”, NIPS (2012)

Input Image

e | will discuss two uses: classification and semantic segmentation

FCN-8s DeeplLab CRF-RNN Ground Truth

B-ground Aeroplane Bicycle Bird Boat Bottle Bus
Car Cat Chair Cow | Dingingtable  Dog Horse
Motorbike Person Potted-Plant Sheep Sofa TV/Monitor

Example of semantic segmentation, from “Conditional
Random Fields as Recurrent NNs”, ICCV (2015)
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https://indico.fnal.gov/getFile.py/access?contribId=393&sessionId=21&resId=0&materialId=slides&confId=11999
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://arxiv.org/abs/1502.03240
https://arxiv.org/abs/1502.03240
https://arxiv.org/abs/1502.03240

Definition of the Signal

nBoONF
T~

* Define signal to be events with one lepton and one proton (11-1p) topology
» Lepton (electron or muon) with kinetic energy >35 MeV
» One proton with kinetic energy >60 MeV (possibly others below that energy threshold)

* These are “golden events” — low background (~only intrinsic v,, constrained by v,))

10 cm

U

K.E.. = 320 MeV
K.E., = 123 MeV ¢

Ve event: signal

MicroBooNE Simulation
Preliminary

vy, event: used to
constrain the flux
and cross-section
systematics

MicroBooNE Simulation
Preliminary

Time

Wire

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary
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e

MicroBooNE Simulation
Preliminary
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Overview of Reconstruction Chain nBoo

P
—_

( PMT Pre-Cuts)

" Cosmic Taggingj
& ROl Finding

Track vs. Shower )

Pixel Labeling

.

C 3D Vertex Reco)

)]
S

Particle ID)

L. Yates | DPF 2017 7



Reconstruction Chain

uBooNP _
T

( PMT Pre-Cuts)

" Cosmic Taggingj
& RO Finding )

e ~
Track vs. Shower

. .

( 3D Vertex Reco)
(Particle IDJ

Pixel Labeling

e PMT pre-cuts reject low-energy
noise and other backgrounds

e Keep >96% of neutrinos (based
on simulations)

e Reject >75% of background
(based off-beam data)
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Reconstruction Chain
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An Event Display

The v, event from
a few slides ago

Cosmic Data : Run 6280 Event 6812 May 12th,-26‘16

These low-energy neutrino events are small, and we have lots of cosmics
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Cosmic Pixel Tagging uBoo

e Cosmic anc

other bac

e [dentify and tag these

» Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary

\/

kground tracks cross the TPC boundary

poundary crossing points

» Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane

» Anode/cathode: crossings have specific AT between PMT flash and wire signal

 Build up from end points by following charge using 3D path finding

L. Yates | DPF 2017
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Region-of-Interest Finding Boo

MicroBooNE Simulation 120 cm

Preliminary | /| ve le-1p
'i | K.E.e =563 MeV
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AR =0.33 cm
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After tagging cosmic tracks, draw 3D region-of-interest (ROI) box around untagged pixels
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Reconstruction Chain uB:

( PMT Pre-Cuts)
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Pixel Labeling
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Track vs. Shower Pixel Labeling nBoONE. _

=

Wire

» Goal: separate tracks and showers to
make the 3D vertex reconstruction and
track/shower clustering more efficient

Tick

K.E.. = 341 MeV . .
[ AONERTIRI VA © Semantic segmentation network (SSNet)

takes in the wire information and labels
MicroBooNE each pixel in the image as “track-
Simulation like” (yellow), “shower-like” (cyan), or
Preliminary “background” (blue)

MicroBooNE

Track-like Psmf'lllﬁ.lthIl
Shower-like Truth label reliminary

MicroBooNE

Track-like Slr?ulqtlon
Shower-like SSNet output Preliminary
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SSNet Performance on Data nBooNP _

=

e To study the performance of SSNet on data, we ran over a
sample of selected CC m¥ events

» “Study Towards an Event Selection for Neutral Current Inclusive Single t° Production in MicroBooNE”,
MicroBooNE Public Note MICROBOONE-NOTE-1006-PUB

e Here, the proton and muon are correctly labeled as track-like

* The two y showers are correctly labeled as shower-like, except
the beginning “stub” of one is labeled as track-like

e Overall, SSNet pixel labeling accuracy >90%

Wire signal amplitude SSNet output

cos7.

/

. _

\, cosmic

_— cosmic .
. BNB Data : Run 5419 Event 6573 March 14th, 2016

BNB Data : Run 5419 Event 6573 March 14th, 2016

L. Yates | DPF 2017 15


https://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1006-PUB.pdf

Reconstruction Chain
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3D Vertex Reconstruction

K]

If both track-like and shower-like pixels are found (e.g., a ve event):
e For each plane: find endpoint of track where shower is attached
e Correlate these endpoints across planes to identify 3D region

e Scan 3D space around the candid

e Add a vertex at the 3D point that
and shower meet across all three

ate vertex

best matches where the track
nlanes
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3D Vertex Reconstruction
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If there are only track-like pixels (e.g., vy normalization sample):

e For each plane: create 2D vertex seeds at any kink points

e Scan space around each seed to find the best vertex point

e Combine information from al

e |f the best vertices from each
vertex at that 3D point

three planes

hlane are 3D-consistent, add a

L. Yates | DPF 2017
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Reconstruction Chain

nB:
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Particle Identification

uBoo
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Preliminary
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Particle  Correct ID
e 77.8 £0.7%
2% 83.4 + 0.6%
i 89.7 + 0.5%
T 71.0 £0.7%
P 91.2 + 0.5%

e After 3D vertex reconstruction, cluster pixels attributed to each

single track or shower coming out of the vertex

e Feed individual particle clusters into a CNN trained to do single-
narticle identification (HighRes GoogleNet)

e L ed to MicroBooNEF'’s first collaboration publication!

» “Convolutional Neural Networks Applied to Neutrino Events in a LArTPC”, JINST 12, P03011 (2017)
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http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/

Reconstruction Chain nBooNE _

( PMT Pre-Cuts)
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Topological Sidebands nBooNE _

* In general, a “sideband” study uses events that are outside the
“analysis box” but have important similarities to events inside it

e Typically, use events that are similar in their kinematics — instead,
we consider events that are similar in topology

e In particular, we want to draw sidebands from data to help us
understand CNN performance on simulations vs. detector data

e We plan to use these samples to:

» Test simulation vs. data agreement
» Study efficiencies

e Examples of topological sidebands
» CC ®— has a Tu-1p vertex like v, events; already used to test SSNet
» NC 7%, where one photon converts near the vertex — has 1e-1p topology like ve

» Stopping muons — track + EM shower topology, like ve
» “Chimera” events
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Chimera Events
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e Chimera events are made by “copy-pasting” single-particle components
from cosmic ray data that are selected and combined to create neutrino-like
events (in terms of topology)

» Use proton and stopping muon for v, proton and electron (or EM shower) for v

» Allow for but want to minimize spatial translation; do not allow rotation

» Truncate the entering portion of muon tracks, so they appear contained within the fiducial volume
of the detector

* They can provide a sample of data-based events that cover the entire
physics parameter space of interest for our signal

* Above: One of the first v,-like chimeras

integrated wire amplitude [ADC]

L. Yates | DPF 2017
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summary uBoo

P
—_

e Fully automated reconstruction chain for low-energy neutrino
events, which includes traditional and deep learning algorithms

» Reject cosmic backgrounds
» Find the neutrino interaction within the event

» Separate tracks and showers, cluster\

» Reconstruct 3D vertex

» Identify individual particles/
e Full 3D reconstruction in progress

» dE/dx, event selection

» Physics!

e Efficiency and systematics studies in progress

e Important development for upcoming LArTPC programs
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Backup Slides

L. Yates — DPF — August 3, 2017
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The MicroBooNE Detector

Anode planes:
U, VY

Cathode
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collection “Design and Construction of the MicroBooNE Detector”
JINST 12, PO2017 (2017)
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http://iopscience.iop.org/article/10.1088/1748-0221/12/02/P02017

A Few Words About Deep Learning nBooNE _

el

tts:f/w.voutbe.oom/watch?v:AqkfIQ4IGaM

e Convolutional neutral networks have several important properties

» “Neurons” scan over the image looking at a limited set of pixels at each point
» They “learn” local, translationally invariant features

» Each layer of neurons builds on the features found by the previous ones to reach
increasing levels of complexity/abstraction

e In the above, the black-and-white boxes show the “activation” of
neurons in response to the images; the neuron highlighted on the
right responds to faces, while the one on the left responds to text
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More on Deep Learning

e See T. Wongjirad’s talk from Tuesday (here)

Run 3493 Event 41075, Oct. 23rd, 2015

CONVOLUTIONAL NEURAL NETWORKS IN

Taritree Wongjirad | DPF 2017
Tufts/MIT
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PMT Pre-Cuts
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e Keep >96% of neutrinos (based on simulations)
e Reject >75% of background (based on rejection of off-beam data)

L. Yates | DPF 2017

29



PMT Pre-Cuts ub

beam window
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e Reject: Random, single-photoelectron noise (~200 kHz)

» No time correlation between these single-photoelectron pulses
» Require 20 photoelectrons in 93.75 ns — this becomes the definition of a “signal”

e Reject: In-time flash caused by Michel electron, from decay of a cosmic muon

» Require no signal for 2 ps before the beam window

e Reject: PMT-based noise
» Limit the total amount of the light collected by a single PMT to <60% of the total light

e Keep >96% of neutrinos (based on simulations)
* Reject >75% of background (based on rejection of off-beam data)

L. Yates | DPF 2017 30



Cosmic Pixel Tagging uBoo

e Cosmic ano

other bac

e [dentify and tag these

» Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary

\/

kground tracks cross the TPC boundary

boundary crossing points

» Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane

» Anode/cathode: crossings have specific AT between PMT flash and wire signal

* Connect end points by following the charge using 3D path finding

L. Yates | DPF 2017
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Cosmic Pixel Tagging uBoo

e Cosmic ano

other bac

e [dentify and tag these

» Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary

kground tracks cross the TPC boundary

boundary crossing points

» Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane

» Anode/cathode: crossings have specific AT between PMT flash and wire signal

* Connect end points by following the charge using 3D path finding

L. Yates | DPF 2017
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Cosmic Pixel Tagging uBoo
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e Cosmic and other background tracks cross the TPC boundary

e |dentify and tag these boundary crossing points

» Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary
» Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane
» Anode/cathode: crossings have specific AT between PMT flash and wire signal

* Connect end points by following the charge using 3D path finding
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Examples of Topological Sidebands @

CC md NC ¥, one y converts near vertex

Truncated stopping muon
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