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CHALLENGE FOR ANALYSIS IN PARTICLE PHYSICS THIS CENTURY
UNIQUE CHALLENGES

* Particle physicists (MINERVA, IceCube, etc) produce an enormous

amount of data:

* Detectors with many channels create a high resolution image of event

» Astrophysics and particle physics are often in the “intensity frontier”
with an enormous data rate

* Previous century: Scanners (photographic ¢
plates), counting and simple "bottom up’ \
algorithmic procedures \\‘

* This century: Machine Learning and
Pattern Recognition

Brookhaven National Lab




CHALLENGE FOR ANALYSIS IN PARTICLE PHYSICS THIS CENTURY
PERSONAL QUEST SINCE 2012

The amount of data, due to the size of the detectors and the
number of relevant events, poses unique challenges:

» Difficult to find’ the most useful variables (or features)

» Simulation (or “labeled data’) is required for analysis but may
have “artifacts’ which do not exist in data (which is “unlabeled’).

Machine Learning Algorithms are complicated

* Support Vector Machine or Boosted Decision Tree or Neural
Network or k-Nearest Neighbors and then training speed,
parameters, kernel, kernel properties, layers, etc?




CHALLENGE FOR ANALYSIS IN PARTICLE PHYSICS THIS CENTURY
NEW DIRECTIONS FROM COMPUTER VISION

« Challenge due to volume of data:

* Follow lead of computer vision and pattern recognition and use
Convolutional Neural Networks to extract geometric features.

e This was enabled by the advent of GPUs and algorithmic
advances (dropout, initialization, etc). - Revolutionary

¢ Development of domain-adversarial training as solution to having
lots of unlabeled data but little labeled data (arXiv:1505.07818).

» Complexity of MLA: use Neural Networks

» See talks next year about optimizing topology/parameters (ALCC
HEP 109 at ORNL).




MACHINE LEARNING ALGORITHMS (MLA)
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DATA (MC) ‘ FEATURE EXTRACTION ALGORITHM
Faiks FEATURES

* Feature extraction realized by procedural algorithms. (Human Intelligence)
* MLA can provide new variables which can then be fed into later MLA.

» Developing and selecting variables and features to feed into a well behaved
and high impact MLA is one of the greatest challenges in an analysis.

FEATURE EXTRACTION MLA
DATA FEATURES




MINERVA EXPERIMENT AT FERMILAB

HIGH RESOLUTION IMAGE

120 modules for tracking and
colorimetry (32k readout | Elevation View

channels)

The MINQOS near detector
serves as a muon
spectrometer.

Region
8.3 tons total

<
Active Tracker g
:

Liquid
Helium

Nuclear Target Region
(C, Pb, Fe, Hz0)
MINOS Near Detector
(Muon Spectrometer)

Steel Shield
Scintillator Veto Wall

15 tons

Side ECAL 06 tons

. | Side HCAL 116 tons |
Made up of planes of strips in P —
‘ 5m >4—2 M —

3 orientations: X, U, and V. | 208 active planes x 127 scintillator bars -

Includes Helium target, water 4 tracker modules between each target

target and 5 passive nuclear
targets made up of Carbon,
Iron and Lead.
| /




MINERVA EXPERIMENT AT FERMILAB
LOTS OF DATA AND COMPLICATED IMAGE
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 We have taken 12E20
Protons-On-Target in the
Medium Energy (ME)
neutrino beam (6E6 in one

playlist).
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measurements.

Neutrinos/cm%GeV/POT

* The majority of the flux is
now in the DIS region. Deep
Inelastic Scattering is a more

challenging reconstruction.
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IN DIS EVENTS LARGE AND COMPLICATED HADRONIC SHOWERS MAY MASK THE PRIMARY VERTEX FROM
TRACK BASED ALGORITHM (WALK BACK PRIMARY TRACK AND LOOK FOR SECONDARIES)

MINERVA VERTEX FINDING

RECONSTRUCTED VERTEX

TRUE VERTEX




MINERVA VERTEX FINDING

DEEP NEURAL NETWORK (DNN)

- DNN provides prediction of the |dentifying events in 11 "segments”

segment (or plane number) an Segment0 1 2 3 4 789 10 —
interaction is in.

We use non-square kernels and
pool along X,U,V to collapse
into semantic space in X,U,V
but leave z unchanged.

Plane number is done the same
but class is based on plane
number and not segment.

Target 1

4 tracker modules
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MACHINE LEARNING

DEEP CONVOLUTIONAL NEURAL NETWORKS

LABEL  DEEP CONVOLUTIONAL NEURAL NETWORK

LABELED
DATA (MC) FEATURE NON-LINEAR LOSS
EXTRACTION COMBINATION FUNCTION
DATA OF FEATURES

* Feature extraction is realized within the MLA. This extraction may be
convolved with the nonlinear construction of more complicated

features and optimization.

* Convolutional Neural Network may be used only for feature extraction.

FEATURE EXTRACTION FEATURE COMBINATION

DATA
DATA




DEEP NEURAL NETWORK (DNN])

NONLINEAR FEATURE EXTRACTION

This is the "hierarchal model’
where the representations in
early layers are combined in
the later layers.

A deep system of nonlinear
layers and fully connected
layers allow for the
production of complicated
nonlinear combinations.

In a deep neural network, the
early layers of the network
‘learn’ local features while
the later layers “learn’ global
features.

Deep Learning learns layers of features
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CONVOLUTIONAL NEURAL NETWORK (CNN)

GEOMETRIC FEATURE EXTRACTION

image k "features”

* These types of networks are well suited
for feature extraction for things like t’_ T ; | \
images with geometric structures. | @Q @

Particle physics events have
geometric structures which are
procedural algorithms (or scanners)
identify.
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Convolutional networks have fewer
parameters that are fit due to having
only a single parameter across the
space (for a given kernel). Parameters
describe how the kernel is applied.

In MINERVA we have time and energy new depth = &J
information (obvious use of “depth’) /
Final convolutional layer is a 'semantic’

representation rather than a spatial
representation.
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DEEP CONVOLUTIONAL NEURAL NETWORK FOR VERTEX FINDING
DCNN

Started from minimalist model and

added layers and adjusted filters
following intuition.

We have three separate convolutional
towers that look at each of the X, U, and
V images.

— A
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These towers feature image maps of
different sizes at different layers of
depth to reflect the different information
density in the different views.
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The output of each convolutional tower
is fed to fully connected layer, then
concatenated and fed into another fully
connected layer before being fed into
the loss function.




VERTEX FINDING RESULTS (SELECTED)
SEGMENT DCNN

Track-Based DNN Row

Row Normalized

: +
Normalized Event Counts +

stat error (%
Event Counts AR (%)

+ stat error (%)

Improvement

Upstream of Target 1 41.11+0.95 68.1+£0.6 27+1.14

92.4x0.16 14.4+0.34




- NEvents

DIS Sample - Target 2

MINERVA Work In-Progress
7.44e+20 POT
Downstream Scint.

[ Upstream Scint.
[ Other Target
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Plane Number DNN

Target 2

1

J_ DNN, Mean = -1.76
DNN, RMS = 12.77

w— Track-based, Mean = -8.83

ww Track-based, RMS = 50.98

N Events /1.7 cm

[
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Vertex Z Residual (mm)

DIS Sample - Target 2
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Downstream Scint.
[ Upstream Scint.

[ other Target

| N EVents

14 16
Plane Number Track-Based Reconstruction

Here are results from the plane
number classifier (67 planes).

Residual is true - center of plane for
DNN and true - reconstructed z for
track based reconstruction.

Regression was nonproductive for
non-uniform/non-linear space studied.
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MACHINE LEARNING

DOMAIN ADVERSARIAL TRAINING

DEEP CONVOLUTIONAL NEURAL NETWORK
LABEL LOSS

LABELED FUNCTION

DATA (MC) [PATA"  FEATURE MINIMIZED
EXTRACTION NON-LINEAR
COMBINATION

OF FEATURES LOSS
UNLABELED pata o

DATA MAXIMIZED
LABEL

 In computer vision and pattern recognition a lack of labelled data is
the problem, for us the problem is imperfect labeled data (simulation).

UNLABELED

FEATURE EXTRACTION FEATURE COMBINATION
DATA DATA




DOMAIN ADVERSARIAL TRAINING

DEEP NEURAL NETWORKS

 The training needs to be able Combine simulation
to discriminate on the source

domain but be indiscriminate
between the domains.

image and data image.

Training to extract and

combine features is on the ﬂ
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to both domains.

https://arxiv.org/abs/1505.07818



https://arxiv.org/abs/1505.07818

TESTS OF DOMAIN ADVERSARIAL TRAINING

FINAL STATE INTERACTIONS (FSI)

FSl is one of the central nuclear
physics ‘corrections’ that impact
every measurement.

We can see the effect of having standard
different features between two DNN
domains by restricting our training

samples, removing dropout layers

and having different simulation as

the target domain.

For the NN with domain-adversarial with

training the loss increases at a domain-
slower rate and the behavior of the adversarial
sample with both nuclear physics training

models (FSI on and off in GENIE)
was approximately the same.

DCNN —— Train with FSI
. -..-. Test without FSI
Training sample S0K — - Test with FSI

No droupout layer

—

DANN — Train with FSI
-..-. Test without FSI
Training sample 50K — - Test with FSI

No droupout layer

III|III|III|III|III|III|III|I
—

—




DISCUSSION
DEEP CONVOLUTIONAL NEURAL NETWORKS

* The selected problem, vertex finding in MINERVA in the ME flux, was
selected to be one immune to most simulation problems (flux, nuclear
model, etc) and for how clear it was for human scanners.

* We will investigate systematics the traditional way by varying simulation
(flux, nuclear model, etc).

* We can calculate the uncertainty due to using this ML method by training
the DCNN with different sets of simulations and observing the
systematic error.

* Very successful, effective increase of DIS statistics in targets of >30%.

* We have varied flux, nuclear model, W, etc when studying domain-
adversarial training. Look for a paper to appear sometime in the next two
months. We will continue to study domain-adversarial training in hadron
multiplicity and semantic segmentation based particle identification.
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TYPES OF LAYERS
DONEC QUIS NUNC

Convolutional layers: Normal neural layer - Made up of neurons with
learnable weights. Convolution layers share weights across neurons.

Pooling: as the number of feature maps grow, the complexity of the
network explodes. Pooling reduces the “spatial size” or amount of
parameters and computation in the network.

Fully connected layer: Neurons in a fully connected layer have full
connections to all activations in the previous layer.

Dropout layer:Randomly drop connections between layers on each pass
during training to eliminate co-adaptations in the network.

Loss function :Loss function indicate the penalty for an incorrect
prediction.




ENERGY IMAGES WITH
NORMALIZED ENERGY
WITHIN EACH EVENT.

MINERVA
IMAGES

scaled energy

scaled energy

scaled energy

scaled energy

scaled energy

scaled energy
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