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UNIQUE CHALLENGES

CHALLENGE FOR ANALYSIS IN PARTICLE PHYSICS THIS CENTURY

• Particle physicists (MINERvA, IceCube, etc) produce an enormous 
amount of data: 

• Detectors with many channels create a high resolution image of event 

• Astrophysics and particle physics are often in the ``intensity frontier’’ 
with an enormous data rate

Brookhaven National Lab
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• Previous century: Scanners (photographic 
plates), counting and simple `bottom up’ 
algorithmic procedures 

• This century: Machine Learning and 
Pattern Recognition



PERSONAL QUEST SINCE 2012

CHALLENGE FOR ANALYSIS IN PARTICLE PHYSICS THIS CENTURY

• The amount of data, due to the size of the detectors and the 
number of relevant events, poses unique challenges: 

• Difficult to `find’ the most useful variables (or features) 

• Simulation (or `labeled data’) is required for analysis but may 
have `artifacts’ which do not exist in data (which is `unlabeled’). 

• Machine Learning Algorithms are complicated 

• Support Vector Machine or Boosted Decision Tree or Neural 
Network or k-Nearest Neighbors and then training speed, 
parameters, kernel, kernel properties, layers, etc?
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NEW DIRECTIONS FROM COMPUTER VISION

CHALLENGE FOR ANALYSIS IN PARTICLE PHYSICS THIS CENTURY

• Challenge due to volume of data: 

• Follow lead of computer vision and pattern recognition and use 
Convolutional Neural Networks to extract geometric features. 

• This was enabled by the advent of GPUs and algorithmic 
advances (dropout, initialization, etc). - Revolutionary 

• Development of domain-adversarial training as solution to having 
lots of unlabeled data but little labeled data (arXiv:1505.07818). 

• Complexity of MLA: use Neural Networks 

• See talks next year about optimizing topology/parameters (ALCC 
HEP 109 at ORNL).
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CARTOON

MACHINE LEARNING ALGORITHMS (MLA)

• Feature extraction realized by procedural algorithms. (Human Intelligence) 

• MLA can provide new variables which can then be fed into later MLA.  

• Developing and selecting variables and features to feed into a well behaved 
and high impact MLA is one of the greatest challenges in an analysis.
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The MINERvA experiment

Plane views:
  1.  Vertical bars
  2.  +60°
  3.  –60°

208 active planes × 127 scintillator bars

17 mm Charge-sharing triangular 
strips for ~3mm position 

resolution

Nucl. Inst. and Meth. A743 (2014) 130
 arXiv:1305.5199

HIGH RESOLUTION IMAGE

MINERVA EXPERIMENT AT FERMILAB

• 120 modules for tracking and 
colorimetry (32k readout 
channels)  

• The MINOS near detector 
serves as a muon 
spectrometer. 

• Made up of planes of strips in 
3 orientations: X, U, and V.  

• Includes Helium target, water 
target and 5 passive nuclear 
targets made up of Carbon, 
Iron and Lead.

• Different targets built with combinations of different materials

Nuclear Targets

14

Nuclear Target Region"

Jorge G, Morfín - Fermilab 28 

Fiducial: within 85 cm apothem of beam spot 

Active 
Tracker 

W
at

er
 T

ar
ge

t 

NUC. TARGET 1 
Fiducial Mass  
Fe: 323 kg 
Pb: 264 kg 

NUC. TARGET 2 
Fiducial Mass  
Fe: 323 kg 
Pb: 266 kg 

NUC. TARGET 3  
Fiducial Mass   
C: 166 kg 
Fe: 169 kg 
Pb: 121 kg 

NUC. TARGET 4  
Fiducial Mass  
Pb: 228 kg 

NUC. TARGET 5  
Fiducial Mass 
Fe: 161 kg 
Pb: 135 kg 

WATER TARGET  
Fiducial Mass    
625 kg H20 

1 2 3 4 5 

Helium Target  
Fiducial Mass  
0.25 tons  

4 tracker modules between each target 

CHCarbon Iron Lead
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LOTS OF DATA AND COMPLICATED IMAGE

MINERVA EXPERIMENT AT FERMILAB

• We have taken 12E20 
Protons-On-Target in the 
Medium Energy (ME) 
neutrino beam (6E6 in one 
playlist). 

• The higher statistics and 
energy means improved 
neutrino nuclear 
measurements. 

• The majority of the flux is 
now in the DIS region. Deep 
Inelastic Scattering is a more 
challenging reconstruction.
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MINERVA VERTEX FINDING
IN DIS EVENTS LARGE AND COMPLICATED HADRONIC SHOWERS MAY MASK THE PRIMARY VERTEX FROM 

TRACK BASED ALGORITHM (WALK BACK PRIMARY TRACK AND LOOK FOR SECONDARIES)

1 2 3 4 5

RECONSTRUCTED VERTEX

TRUE VERTEX
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Identifying events in 11 "segments"

Target 1 2 3 4 5

Segment 0 2 4 6 7 101 3 5 8 9

DEEP NEURAL NETWORK (DNN)

MINERVA VERTEX FINDING

• DNN provides prediction of the 
segment (or plane number) an 
interaction is in. 

• We use non-square kernels and 
pool along X,U,V to collapse 
into semantic space in X,U,V 
but leave z unchanged. 

• Plane number is done the same 
but class is based on plane 
number and not segment. 

• Between targets only 2 (1 in 
segment 8) pixels in U and V. 

• Only the first planes of 
downstream is included in 
segment 10.
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DEEP CONVOLUTIONAL NEURAL NETWORKS

MACHINE LEARNING

• Feature extraction is realized within the MLA. This extraction may be 
convolved with the nonlinear construction of more complicated 
features and optimization. 

• Convolutional Neural Network may be used only for feature extraction.
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NONLINEAR FEATURE EXTRACTION

DEEP NEURAL NETWORK (DNN)

• This is the `hierarchal model’ 
where the representations in 
early layers are combined in 
the later layers. 

• A deep system of nonlinear 
layers and fully connected 
layers allow for the 
production of complicated 
nonlinear combinations. 

• In a deep neural network, the 
early layers of the network 
`learn’ local features while 
the later layers `learn’ global 
features.
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GEOMETRIC FEATURE EXTRACTION

CONVOLUTIONAL NEURAL NETWORK (CNN)

• These types of networks are well suited 
for feature extraction for things like 
images with geometric structures. 

• Particle physics events have 
geometric structures which are 
procedural algorithms (or scanners) 
identify. 

• Convolutional networks have fewer 
parameters that are fit due to having 
only a single parameter across the 
space (for a given kernel). Parameters 
describe how the kernel is applied. 

• In MINERvA we have time and energy 
information (obvious use of `depth’) 

• Final convolutional layer is a `semantic’ 
representation rather than a spatial 
representation.
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DCNN

DEEP CONVOLUTIONAL NEURAL NETWORK FOR VERTEX FINDING

• Started from minimalist model and 
added layers and adjusted filters 
following intuition. 

• We have three separate convolutional 
towers that look at each of the X, U, and 
V images. 

• These towers feature image maps of 
different sizes at different layers of 
depth to reflect the different information 
density in the different views. 

• The output of each convolutional tower 
is fed to fully connected layer, then 
concatenated and fed into another fully 
connected layer before being fed into 
the loss function.
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SEGMENT DCNN

VERTEX FINDING RESULTS (SELECTED)

Target

Track-Based 
Row 

Normalized 
Event Counts 

+ stat error (%)

DNN Row 
Normalized 

Event Counts + 
stat error (%)

Improvement  
+  

stat error (%)

Upstream of Target 1 41.11±0.95 68.1±0.6 27±1.14

1 82.6±0.26 94.4±0.13 11.7±0.3

Between target 1 and 2 80.8±0.46 82.1±0.37 1.3±0.6

2 77.9±0.27 94.0±0.13 16.1±0.3

Between target 2 and 3 80.1±0.46 84.8±0.34 4.7±0.6

3 78±0.3 92.4±0.16 14.4±0.34
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Here are results from the plane 
number classifier (67 planes).

Residual is true - center of plane for 
DNN and true - reconstructed z for 

track based reconstruction.

Regression was nonproductive for 
non-uniform/non-linear space studied.
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DOMAIN ADVERSARIAL TRAINING

MACHINE LEARNING

• In computer vision and pattern recognition a lack of labelled data is 
the problem, for us the problem is imperfect labeled data (simulation).
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DEEP NEURAL NETWORKS

DOMAIN ADVERSARIAL TRAINING

• The training needs to be able 
to discriminate on the source 
domain but be indiscriminate 
between the domains. 

• Training to extract and 
combine features is on the 
forward propagation, training 
to remove features which can 
be used to differentiate the 
domains on back propagation. 

• The network develops an 
insensitivity to features that 
are present in one domain  but 
not the other, and trains only 
on features that are common 
to both domains.

Combine simulation 
image and data image.
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Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST Syn Numbers SVHN Syn Signs

Source

Target

MNIST-M SVHN MNIST GTSRB

Figure 6: Examples of domain pairs used in the experiments. See Section 5.2.4 for details.

Method
Source MNIST Syn Numbers SVHN Syn Signs

Target MNIST-M SVHN MNIST GTSRB

Source only .5225 .8674 .5490 .7900

SA (Fernando et al., 2013) .5690 (4.1%) .8644 (�5.5%) .5932 (9.9%) .8165 (12.7%)

DANN .7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)

Train on target .9596 .9220 .9942 .9980

Table 2: Classification accuracies for digit image classifications for di↵erent source and
target domains. MNIST-M corresponds to di↵erence-blended digits over non-
uniform background. The first row corresponds to the lower performance bound
(i.e., if no adaptation is performed). The last row corresponds to training on
the target domain data with known class labels (upper bound on the DA perfor-
mance). For each of the two DA methods (ours and Fernando et al., 2013) we
show how much of the gap between the lower and the upper bounds was covered
(in brackets). For all five cases, our approach outperforms Fernando et al. (2013)
considerably, and covers a big portion of the gap.

Method
Source Amazon DSLR Webcam

Target Webcam Webcam DSLR

GFK(PLS, PCA) (Gong et al., 2012) .197 .497 .6631

SA* (Fernando et al., 2013) .450 .648 .699

DLID (Chopra et al., 2013) .519 .782 .899

DDC (Tzeng et al., 2014) .618 .950 .985

DAN (Long and Wang, 2015) .685 .960 .990

Source only .642 .961 .978

DANN .730 .964 .992

Table 3: Accuracy evaluation of di↵erent DA approaches on the standard Office (Saenko
et al., 2010) data set. All methods (except SA) are evaluated in the “fully-
transductive” protocol (some results are reproduced from Long and Wang, 2015).
Our method (last row) outperforms competitors setting the new state-of-the-art.
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FINAL STATE INTERACTIONS (FSI)

TESTS OF DOMAIN ADVERSARIAL TRAINING

• FSI is one of the central nuclear 
physics `corrections’ that impact 
every measurement. 

• We can see the effect of having 
different features between two 
domains by restricting our training 
samples, removing dropout layers 
and having different simulation as 
the target domain. 

• For the NN with domain-adversarial 
training the loss increases at a 
slower rate and the behavior of the 
sample with both nuclear physics 
models (FSI on and off in GENIE) 
was approximately the same. Epoch
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DEEP CONVOLUTIONAL NEURAL NETWORKS

DISCUSSION

• The selected problem, vertex finding in MINERvA in the ME flux, was 
selected to be one immune to most simulation problems (flux, nuclear 
model, etc) and for how clear it was for human scanners. 

• We will investigate systematics the traditional way by varying simulation 
(flux, nuclear model, etc). 

• We can calculate the uncertainty due to using this ML method by training 
the DCNN with different sets of simulations and observing the 
systematic error. 

• Very successful, effective increase of DIS statistics in targets of >30%. 

• We have varied flux, nuclear model, W, etc when studying domain-
adversarial training. Look for a paper to appear sometime in the next two 
months. We will continue to study domain-adversarial training in hadron 
multiplicity and semantic segmentation based particle identification.
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BACKUP
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DONEC QUIS NUNC

TYPES OF LAYERS

• Convolutional layers: Normal neural layer - Made up of neurons with 
learnable weights. Convolution layers share weights across neurons. 

• Pooling: as the number of feature maps grow, the complexity of the 
network explodes. Pooling reduces the “spatial size” or amount of 
parameters and computation in the network.  

• Fully connected layer: Neurons in a fully connected layer have full 
connections to all activations in the previous layer. 

• Dropout layer:Randomly drop connections between layers on each pass 
during training to eliminate co-adaptations in the network. 

• Loss function :Loss function indicate the penalty for an incorrect 
prediction.
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MINERVA 
IMAGES

ENERGY IMAGES WITH 
NORMALIZED ENERGY 
WITHIN EACH EVENT.
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TARGET 4 
RESULTS

IMPROVEMENT OF THE 
VERTEX RECONSTRUCTION
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