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Objectives of the upgrade
1. Compensate for radiation damage to the avalanche photodiode detectors
(APDs) and to the 61,200 barrel PbWO, crystal calorimetry elements

2. Lower the noise of the front-end electronics

3. Allow use of direct APD signal by using a trans-impedance amplifier
to reduce false signals (“spikes”) by signal shape discrimination

4. Improve the timing resolution of the PbWO, elements to deal with much
higher pileup (~200 interactions per bunch crossing)

5. Allow single crystal trigger primitives transmission for all 61,200 PbWO,

barrel calorimetry elements to the Level 1 trigger with latency (12.5us)
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The CMS Electromagnetic Detector
Talk will focus on Barrel Upgrade

36 “supermodules”
with 1700 PbWO, crystals each
avalanche photodiode sensors

Energy resolution
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» A: stochastic term
» B: noise term

» C: constant term

Performance of the EM barrel
1-3% photon energy resolution

B. Cox University of Virginia 3



ECAL Supermodule
36 such module supporting the PbWO, crystals
arranged azimuthally around the beam pipe

EXPLODED YIEW OF THE ECAL SUFERMODULE
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The complexity of the ECAL barrel supermodules makes extraction and
disassembly prohibitive and prevents changes to the APDs and PbWO, elements
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Off detector electronics

Trigger tower
configuration
25 PbWO. crystals
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On-Detector Barrel Electronics Upgrade
Constraint: The PbWO, detectors and the APDs cannot be changed

The driver of the barrel EM calorimeter upgrade
Is the desire from the increase in trigger latency
From 4 ps to 12.5 ps and a level 1 trigger rate
increase from 100 kHz to 750 kHz

Upgrade of the transmission rate of the data transfer
from the front end electronics to the L1 trigger to allow
transmission of all 61,200 PbWO, crystal signals

Use a trans-impedance amplifier to make available the fast APD
signals for “spike” rejection by time profile of PbWO, signals.

Improve and Replace the Low Voltage Regulators (LVR)

Improve and Replace the Very Front End ADC cards (VFE)

Improve and Replace the Front End Data transmissions card (FE)

Use faster optical fiber links (9.6 Gb/s) to increase capacity

Increase sampling frequency to 160 MHz to improve timing

eliminate spikes
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Schematic of Frontend Electronics
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Problem 1a
The Radiation Damage Effects on PbWO,

Effect of HL-LHC Increased Dose on PbWO, to decrease light yield
Partially Compensated by PbWO, operating temperature decrease (18° to 9° C)
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Problem 1b Radiation Effects on APDs
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Extrapolated
APD Radiation Damage Dark Currents
with different operating temperatures
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(Partially mitigated by operation at lower temperature 9° C)
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Energy Resolution for Higgs gammas
Different Integrated Hadron Fluxes vs. Eta
(with and without EB Upgrade at 1000 fb)

CMS Simulation Preliminary
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Both rad damage and pileup included
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Problem 2

Massive Pileup
(200 overlapping in-time events)

Mitigation of
“Spikes” by

1. Discriminating
on shape
difference wrt
true signals

2. Use of the “Swiss
cross” discriminant
of shower shapes
in trigger towers

1. Leads to a high rate of “spikes” (false signals from hadrons
passing through the APD acceleration region) proportional

to pileup rate. Reduction of
2. Pileup of true signals from 200 overlapping interactions per pileup of true
bunch crossing. signals by 30 ps

Can we find a way to mitigate these problems? timing
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PbWO, Signals Time Profile
Scintillation plus Cerenkov
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Stability of Phase | Pulse shapes
With Energy/Temperature
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Requirement of 160 MHz sampling rate for
EM barrel calorimeter time resolution of < 30 ps

..........................................................................

—e— Sampling @ 100 MHz '

_", ............ ............. . S ...... . ...................................... sampliﬂg@120MHZ .....
| L e —+ Sampling @ 160 MHz

-

3 4 5 6 7 8 910 20 30 40 50
E [GeV]

160 MHz required for < 30 ps timing resolution in EM calorimeter
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Spike Frequency Fraction vs True Signal Rate.

False signal Spike rate is proportional to PU
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Spike Discrimination and Pulse Timing

preliminary
ECAL Test Beam 2016
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Spikes have different shapes
from scintillation signals and can
be rejected at an early stage by
shape discrimination.

30 ps timing of signals in the Higgs
photon energy regime with 5 MHz
sampling to allow better vertex
resolution for photons to reduce

Pileup.
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Results of Improved VFE and FE

Trans-impedance amplifier allows direct look at APD analog signal
allowing possibility of early spike rejection on pulse shape.

VFE changes to decreased shaping time (20 ns) plus increased
digitization rate (160 MHz) to reduce out-of-time pileup
contamination, spikes, and electronics noise by 30 ps timing.

FE card becomes pipeline, moving all 61,200 PbWO, signals off-
detector for more complete processing.

Off-detector electronics will be upgraded to accommodate required
higher data transfer rates.

Single crystal signals transmitted to offline Level 1 trigger will allow

arbitrary latency and offline primitive usage in the trigger leading to
improved spike rejection and higher trigger rates.
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Summary of Phase Il EM Barrel Upgrades

The barrel electromagnetic calorimeter will sustain some radiation damage
somewhat mitigated by operation at 9° C but, unlike the endcap electromagnetic
calorimeter survive to 3000 fb! and will not have to be replaced.

APDs will survive but will be noisier but this will also mitigated by operation at 9° C
No physical changes will be attempted for the PbWO, and the APDs
Replacement of the on-detector electronics to

Allow for increase trigger rate from 100 kHz to 750 kHz

Allow increase in latency for L1 trigger from 5 to 12.5 ps

Improve spike rejection by single crystal info transmitted to L1 and by
access to APD fast pulse shapes.

Achieve 30 ps timing to allow good vertex determination and PU mitigation
by 5 MHz sampling.
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