New developments in the relation between quantum gravity and quantum information

Juan Maldacena

Institute for Advanced Study

DPF Meeting
Fermilab, 2017

Questions \& tools

- How is quantum information stored in the state?
- What is the pattern of entanglement?
- How complex is the state?
- How is quantum information flowing dynamically ?
- Computation of entropies of subsystems ("entanglement entropy") \rightarrow tells us about this structure.
- Holography and the Ryu-Takayangi formula

First topic: Entanglement entropy

Entropy as a tool in QFT

- Use subregion entropy to characterize renormalization group flows.

- Entropy of a disk or sphere \rightarrow monotonous under RG flow. (c, f, a theorems). Casini, Teste, Torroba, Huerta

$$
S(A \cup B \cup C)+S(C) \leq S(A \cup C)+S(B \cup C)
$$

- Proofs of lower bounds for the null energy.

$$
0 \leq \int_{\text {null ray }} d x^{-} T_{--}, \quad \frac{\delta^{2} S_{\mathrm{ent}}}{\delta \ell^{2}} \leq T_{--} \quad \begin{gathered}
\text { Implications } \\
\text { for gravity }+ \\
\text { quantum fields }
\end{gathered}
$$

Entropy as a tool to explore holography

- Main tool: Ryu-Takayanagi formula.

$$
S(A)=\frac{(\text { Area })_{\text {minimal }}}{4 G_{N}}
$$

Region A_{B} is related to the subregion A.

Cracking the holographic code

Quantum error correction and holography

Almheiri, Dong, Harlow, Preskill, Yoshida, Pastawski

Protecting a qubit is setting in deeper in the bulk!

Complexity theory

Now to dynamics

Universal bound on quantum chaos

 inspired by black holes
Signature of classical chaos \rightarrow divergence of nearby trajectories

Classical

$$
\begin{gathered}
\sum_{\delta q(0)}^{\delta q(t)} \\
\frac{\delta q(t) \propto e^{\lambda t}}{\delta q(0)}=\{q(t), p(0)\}, \quad\{q(t), p(0)\}^{2}
\end{gathered}
$$

Quantum

$$
[Q(t), P(0)]^{2} \quad\left[Q_{i}(t), P_{j}(0)\right]^{2}
$$

Quantum General:

$$
\left\langle[W(t), V(0)]^{2}\right\rangle_{\beta} \propto \frac{1}{S} e^{\lambda t}
$$

Quantum General:

$$
\left\langle[W(t), V(0)]^{2}\right\rangle_{\beta} \propto \frac{1}{S} e^{\lambda t}
$$

W, V are two "‘simple" (initially commuting) observables.

Imagine we have large entropy system, $\mathrm{S} \gg 1$.

This is the definition of the quantum Liapunov exponent
It is defined by its initial increase.

At very long times it saturates to a quantity of order one.

Period of exponential increase

Use now AdS/CFT and black holes

Black holes in a gravity box

For quantum systems that have a gravity dual

Commutator \rightarrow involves the scattering amplitude between these two excitations.

Large $t \rightarrow$ large boost between the two particles.

Leading order \rightarrow graviton exchange
Gravitational interaction has spin 2, Shapiro time delay proportional to energy.

Energy goes as e^{t}
$\left\langle[W(t), V(0)]^{2}\right\rangle_{\beta} \propto \frac{1}{S} e^{\lambda t}$

$$
\lambda=\frac{2 \pi}{\beta}=2 \pi T
$$

Can it be different?

 Graviton \rightarrow phase shift $: \delta(s) \sim G_{N} s \longrightarrow \lambda=\frac{2 \pi}{\beta}$

Regge limit, s>>t, s >> 1

String \rightarrow phase shift
Typical size of string (of graviton in string theory)

Radius of curvature of black hole

It can be less...

More ?

In flat space a phase shift has to scale with a power of s less than one in order to have a causal theory

Maybe there is a bound...

Universal upper bound on chaos

$$
\lambda \leq \frac{2 \pi}{\beta}=2 \pi T=\frac{2 \pi T}{\hbar}
$$

JM, Shenker, Stanford

Proof: Uses analyticity in Euclidean time, unitarity, and that simple observables thermalize.

For any large N (small \hbar) quantum system.

Black holes are the most chaotic systems

Are there others ?

Turn to a condensed matter inspired model

Sachdev Ye Kitaev model

N Majorana fermions in $0+1$ dimensions.

Sachdev Ye
Kitaev
Georges, Parcollet

All to all interactions.

$$
H=\sum_{i_{1}, \cdots, i_{4}} J_{i_{1} i_{2} i_{3} i_{4}} \psi_{i_{1}} \psi_{i_{2}} \psi_{i_{3}} \psi_{i_{4}}
$$

Coefficient are random gaussian variables.

It has the virtue of being solvable at large N .

At low temperatures (but not exponentially small), the system is also maximally chaotic.

Few comments

- Thinking of black holes as quantum systems we were lead to a particular Liapunov exponent.
- We also used, for inspiration, properties of flat space scattering amplitudes.
- Final argument does not require black holes and is valid for general quantum systems.
- But it was useful to consider the interrelation between different points of view.

Entanglement and geometry:

Exploring wormholes

The full Schwarzschild wormhole

No need to postulate any exotic matter

No matter at all!

View it as an entangled state

$$
|T F D\rangle=\sum_{n} e^{-\beta E_{n} / 2}\left|\bar{E}_{n}\right\rangle_{L}\left|E_{n}\right\rangle_{R}
$$

Israel 70's JM 00's
JM Susskind

True causal separation

If Bob sends a signal , then Alice cannot receive it.

These wormholes are not traversable, due to the integrated null energy condition

$$
0 \leq \int d x^{-} T_{--}
$$

Not good for science fiction.
Good for science!

$$
|T F D\rangle=\sum_{n} e^{-\beta E_{n} / 2}\left|\bar{E}_{n}\right\rangle_{L}\left|E_{n}\right\rangle_{R}
$$

Measure and send result \rightarrow make wormhole traversable

Entangled

Teleported through the wormhole!
Gao, Wall, Jafferis
JM, Stanford, Zhang
Quantum Teleportation: N qubits with 2 N classical bits and N entangled qubits.
Bennett, Brassard, Crepeau, Jozsa, Peres, Woetters

Measure and send result \rightarrow make wormhole traversable

Teleported through the wormhole!
Gao, Wall, Jafferis
JM, Stanford, Zhang
Quantum Teleportation: N qubits with 2 N classical bits and N entangled qubits.
Bennett, Brassard, Crepeau, Jozsa, Peres, Woetters

Conclusions

- Entanglement entropy has emerged as a tool for exploring quantum field theory.
- Quantum error correction and holography
- Dynamical processes spread quantum information. We are exploring speed limits...
- Quantum teleportation can have a geometric picture as information flowing through a wormhole (in some cases).

Thank you!

Extra Slides

- The list could go on...
- I will explain in some detail one particular example.

We will consider a $1+1$ dimensional quantum field theory

And derive the c-theorem.

Casini - Huerta

$\mathrm{A} \cup \mathrm{C} \cup \mathrm{B}$
$S(A \cup B \cup C)+S(C) \leq S(A \cup C)+S(B \cup C)$
Entropy subaditivity
Lieb Ruskai
$S\left(R^{2} e^{2 \delta}\right)+S\left(R^{2}\right) \leq S\left(R^{2} e^{\delta}\right)+S\left(R^{2} e^{\delta}\right)$
Entropy depends only on the (square of the) proper size of the interval.

$$
\left(R^{2} S^{\prime}\left(R^{2}\right)\right)^{\prime} \leq 0
$$

$$
\left(R^{2} S^{\prime}\left(R^{2}\right)\right)^{\prime} \leq 0
$$

For a CFT: $\quad S\left(R^{2}\right)=\frac{c}{6} \log \left(R^{2} / \epsilon^{2}\right) \longrightarrow R^{2} S^{\prime}\left(R^{2}\right)=\frac{c}{6}$

c-theorem

Zamolodchikov

The argument in $2+1$ is similar but it involves an large number of boosted circular regions. (has not been proven in any other way)

In $3+1$ one needs to compare the entropy to the one of the UV fixed point. And use that the entropy subaditivity is an equality for the case of regions lying on the lightcone

Now to another application

Symmetry

What is this funny
"time translation symmetry" ?

$$
U=e^{i t\left(H_{R}-H_{L}\right)}
$$

Exact symmetry
Exact boost symmetry!

$$
|T F D\rangle=\sum_{n} e^{-\beta E_{n} / 2}\left|\bar{E}_{n}\right\rangle_{L}\left|E_{n}\right\rangle_{R}
$$

Interior is common

If they jump in,
they can meet in the interior!
But they cannot tell anyone.

$$
|T F D\rangle=\sum_{n} e^{-\beta E_{n} / 2}\left|\bar{E}_{n}\right\rangle_{L}\left|E_{n}\right\rangle_{R}
$$

Spacetime connectivity from entanglement

$$
E R=E P R
$$

Van Raamsdonk
Verlinde ${ }^{2}$
Papadodimas Raju

JM Susskind

Entanglement and geometry

