Neutrino Flux Measurement In the DUNE Near Detector

Hongyue Duyang University of South Carolina

For the DUNE Collaboration

DPF Meeting 2017 APSIPARTICLES & FIELDS July 31 - August 4 dpf2017.fnol.gov

Introduction to DUNE

- DUNE is a long-baseline neutrino experiment aiming to solve mass hierarchy and CP-violation by measuring v_{μ} to v_e/\bar{v}_{μ} to \bar{v}_e oscillation in one single experiment.
- 40 kton LAr TPC as the far detector in Lead, SD.
- A capable near detector is crucial for DUNE to constrain systematic uncertainties, including flux uncertainty.

Near Detector Options

- Currently we have several ND options under study:
 - LAr TPC
 - Fine-Grained Tracker (FGT, CDR reference design)
 - High-Pressure Ar Gas TPC
 - Scintillating plastic tracker

Near Detector Options

- Currently we have several ND options under study:
 - LAr TPC-
 - Fine-Grained Tracker (FGT, CDR reference design)
 - High-Pressure Ar Gas TPC
 - Scintillating plastic tracker

Near Detector Options

- Currently we have several ND options under study:
 - LAr TPC-
 - Fine-Grained Tracker (FGT, CDR reference design)
 - High-Pressure Ar Gas TPC
 - Scintillating plastic tracker

Straw Tube Tracker (Argon target)

GAS MIXTURE AND READOUT

- Modern micro-pattern gaseous detectors (i.e. Micromegas, GEMs, etc.) solve traditional problems of TPCs (ion feedback, E×B effects...) and facilitate the operation at high pressure.
- Gas quenchers are probably required to achieve highenough gains. Their concentration must be kept low

EXPECTED PERFORMANCE OF TPC

• Momentum resolution better than 5% at 1 GeV. Dominated by multiple scattering at lower momenta.

$$\mathbf{6} \left(\sigma_p / p \right) \sim \sqrt{\frac{720}{N+5}} \frac{\sigma_x \ p \ \sin \theta}{0.3 \ B \ L} + \left(\frac{0.016}{\beta \ B \ \sqrt{L \ X_0 \ \sin \theta}} \right)$$

- DUNE will use the new LBNF neutrino beam.
- Flux uncertainty comes from hadron production and beam focusing.

- DUNE will use the new LBNF neutrino beam.
- Flux uncertainty comes from hadron production and beam focusing.

- DUNE will use the new LBNF neutrino beam.
- Flux uncertainty comes from hadron production and beam focusing.

Flux Measurement for DUNE

Flux uncertainty comes from hadron production and beam focusing.

Flux Measurement for DUNE

- Flux uncertainty comes from hadron production and beam focusing.
- External hadron production data constraint.
 - Talk on Monday by Amit Bashyal: PPFX for DUNE.

Flux Measurement for DUNE

- Flux uncertainty comes from hadron production and beam focusing.
- External hadron production data constraint.
 - Talk on Monday by Amit Bashyal: PPFX for DUNE.
- In situ measurement at ND: the focus of this talk.
 - Generally speaking neutrino interaction cross-sections have large uncertainty
 - We need some neutrino interaction channels known well enough in some aspect to measure flux:
 - Neutrino-electron scattering for absolute flux.
 - Low-v sample for flux shape.
 - Coherent pions for $\bar{\nu}/\nu$ ratio and beam divergence.

- $E_e \theta^2 = 2m_e(1-y) < 2m_e$.
- Good angular resolution is critical to reduce background.

- $E_e \theta^2 = 2m_e(1-y) < 2m_e$.
- Good angular resolution is critical to reduce background.
- Assuming 2 mrad angular resolution, 6% background is expected.

DUNE Work in Progress

- $E_e \theta^2 = 2m_e(1-y) < 2m_e$.
- Good angular resolution is critical to reduce background.
- Assuming 2 mrad angular resolution, 6% background is expected.
- Background comes from π^0 and ν_e -CC (QE) events:
 - e⁺ sample to control π^0 bkg: need e⁺/e⁻ ID.
 - 2-track v_e -CC QE-like events to constrain v_e " CC QE background (50% efficiency in FGT).

DUNE Work in Progress

- Assuming 1.2 MW beam power, 5 tons ND fiducial mass, 3 years neutrino running we expect:
 - ~7.8k ν_{μ} + e⁻ $\rightarrow \nu_{\mu}$ + e⁻: ~2% precision in 2.5~10 GeV.
 - ~4k ν_{μ} + e⁻ \rightarrow ν_{e} + μ^{-} : ~2.5% precision in 11~50 GeV.
- Given known neutrino direction and good detector resolution it is also possible to measure flux shape (work in progress).

Low-v method

• At very low $v = E_v - E_l$, the cross section is independent from E_v :

$$\frac{d\sigma}{d\nu} = A\left(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2}\right)$$

(A, B and C are parameters formed by nuclear structure functions.)

- the measurement of low v spectrum is approximately a measurement of flux shape.
- The effect of non-zero v cut is account for by a theoretical correction:

$$S(E) = \frac{\sigma(E)^{\nu < \nu_0}}{\sigma(E)^{\nu \to 0}} = \frac{\sigma(E)^{\nu < \nu_0}}{\sigma(E \to \infty)^{\nu < \nu_0}}$$

- Systematic uncertainty dominant:
 - Muon energy
 - Hadronic energy (v)
 - Theoretical correction
- See Lu Ren's talk on Tuesday for MINERvA's Low-v flux measurement

Low- ν method

- Beam hadron production can be parametrized using empirical functions: $\begin{pmatrix} E \times \frac{d^3\sigma}{dp^3} \end{pmatrix} = A (1 - x_R)^{\alpha} (1 + Bx_R) x_R^{-\beta} \times (1 + a'(x_R)p_T + b'(x_R)p_T^2) e^{-a'(x_R)p_T} \end{pmatrix}$
- Use ND low-v neutrino and antineutrino data to constrain beam hadron productions.
- Given good muon/hadron energy resolution, expect an FD/ND ratio at 1~2% precision in 0.5~50 GeV.

Coherent Pion

Summary

- A capable ND is important to constrain the systematic uncertainty for oscillation analysis, including neutrino flux uncertainty.
- A lot of work going on to develop flux measurement methods.
 - Neutrino-electron scattering for absolute flux.
 - Low-v method for relative flux.
 - Coherent pions for \bar{v}/v ratio and beam divergence.
- Combined with external data we aim at a precise flux prediction for DUNE.

Back up slides

- DUNE will use the new LBNF neutrino beam.
- Flux uncertainty comes from hadron production and beam focusing.

- $E_e \theta^2 = 2m_e(1-y) < 2m_e$.
- Good angular resolution is critical to reduce background.
- Assuming 2 mrad angular resolution, 6% background is expected.
- Background comes from π^0 and ν_e -CC (QE) events:
 - e⁺ sample to control π^0 background: need e⁺/e⁻ ID.
 - 2-track v_e -CC QE-like events to constrain v_e -CC QE background (50% efficiency in FGT).