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Introduction to DUNE

- DUNE is a long-baseline neutrino experiment aiming to solve mass hierarchy
and CP-violation by measuring v to v./V, to ¥v. oscillation in one single

experiment.
- 40 kton LAr TPC as the far detector in Lead, SD.

- A capable near detector is crucial for DUNE to constrain systematic
uncertainties, including flux uncertainty.
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Near Detector Options
Currently we have several ND options under study:

LAr TPC

Fine-Grained Tracker (FGT, CDR reference design)
High-Pressure Ar Gas TPC

Scintillating plastic tracker
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Near Detector Options
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Unoscillated vs / GeV /m?/ Year
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Flux uncertainty comes from hadron
production and beam focusing.
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Flux Measurement for DUNE
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- Flux uncertainty comes from hadron production and beam focusing.
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- Flux uncertainty comes from hadron production and beam focusing.
- External hadron production data constraint.
- Talk on Monday by Amit Bashyal: PPFX for DUNE.
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Flux Measurement for DUNE
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- Flux uncertainty comes from hadron production and beam focusing.
- External hadron production data constraint.

- Talk on Monday by Amit Bashyal: PPFX for DUNE.
- In situ measurement at ND: the focus of this talk.

- Generally speaking neutrino interaction cross-sections have large
uncertainty

- We need some neutrino interaction channels known well enough in
some aspect to measure flux:

- Neutrino-electron scattering for absolute flux.
- Low-v sample for flux shape.

- Coherent pions for v/v ratio and beam divergence.
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Neutrino-Electron Scattering

DUNE Work in Progress

- Pure electroweak process with small,

but very well known cross section: 3.5 — E. > 0.0 GeV
Good for measurement of absolute 3 — E, >0.5GeV
ﬂUX. 2.5 —E, > 1.0 GeV

-+ Very forward-going electron/muon
(small E<02) in final state with no other
particles.

. Uncertainty will be dominated by Oy i 0
statistics: need enough detector mass. Exposure (ton MW yr)

Total statistical uncertainty (%)
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Neutrino-Electron Scattering
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Assuming 2 mrad angular resolution, 6%
background is expected.

Background comes from n and v.-CC (QE)
events:

- e" sample to control ¥ bkg: need e*/e” ID.

Events/0.001 GeV rad® (MW 'ton’'yr ")

- 2-track v.-CC QE-like events to constrain ve.-
CC QE background (50% efficiency in FGT,.
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Efficiency

Neutrino-Electron Scattering

Assuming 1.2 MW beam power, 5 tons ND fiducial mass, 3 years
neutrino running we expect:

» ~7.8kv, +e —=v, +e: ~2% precision in 2.5~10 GeV.

« ~dkv,+e = v.+ u:~2.5% precision in 11~50 GeV.
Given known neutrino direction and good detector resolution it is also
possible to measure flux shape (work in progress).

DUNE Work in Progress DUNE Work in Progress
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Low-v method

At very low v = E, - E|, the cross section is independent from E,:
2
d_O':A(1+B V_C \% )
dv AE A9QFE?
(A, B and C are parameters formed by nuclear structure functions.)

the measurement of low v spectrum is approximately a measurement of
flux shape.

The effect of non-zero v cut is account for by a theoretical correction:

T\ <V N\ V<1
sy = 270 o)
O-(E)v—)»() O'(E N OO)I/<I/O

Systematic uncertainty dominant: o __DUNE Work in Progress
«  Muon energy E ‘-‘5§_ —E,+0.2% :
- Hadronic energy (v) ; 1:]5‘: e
- Theoretical correction et
: 0.95 | o=

See Lu Ren’s talk on Tuesday for ook E
MINERVA's Low-v flux measurement o085 E
0.8:....I....I....I...II.H.I]Hllll.ll....l....l....‘

E, (GeV)
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Low-v method

Beam hadron production can be parametrized using empirical
functions: o o iy
<E>< d—p3> = A(1—2g)" (1+ Bxg)xy” X

(1+ d'(zp)pr + V' (zr)p7) e~ (@rlPT

Use ND low-v neutrino and antineutrino data to constrain beam
hadron productions.

Given good muon/hadron energy resolution, expect an FD/ND
ratio at 1~2% precision in 0.5~50 GeV.
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Coherent Pion
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|dentical topology between neutrino and antineutrino to the first order:
constraint on v/v.

Final state muon and pion collinear with incident neutrino with little
nuclear effect: constraint on beam divergence

Combined with neutrino-electron scattering study it might be possible
to constrain flux shape ¢(E).

Requires good momentum resolution for muon and pion.
Work in progress.
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Summary

A capable ND is important to constrain the systematic uncertainty
for oscillation analysis, including neutrino flux uncertainty.

A lot of work going on to develop flux measurement methods.

Neutrino-electron scattering for absolute flux.

Low-v method for relative flux.

Coherent pions for v/v ratio and beam divergence.

Combined with external data we aim at a precise flux prediction for
DUNE.
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Back up slides
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Neutrino-Electron Scattering

Pure electroweak process with small, but DUNE Work in Progress
very well known cross section: Good for

measurement of absolute flux. 3:3 —E.>0.0GeV
. 3 —E, > 0.5 GeV
Very forward-going electron/muon (small ”s e 10Gev

E<02) in final state with no other particles.
Need good angular resolution.

Uncertainty will be dominated by
statistics: need enough detector mass.

Total statistical uncertainty (%)
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iven known neutrino direction it is also Exposure (fon MW y1)

possible to measure flux shape.
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Neutrino Flux at DUNE
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N Events / 0.0008 GeV

Neutrino-Electron Scattering

MINERVA, Phys. Rev. D 93, 112007 (2016)
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e* sample to control i° background: need e*/e" ID.
2-track v.-CC QE-like events to constrain v.-CC QE background

(50% efficiency in FGT).
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