Measurement of the semileptonic $tt+\gamma$ production cross section at 8 TeV

Danny Noonan on behalf of the CMS Collaboration
Florida Institute of Technology

APS DPF Meeting
July 31 - August 4, 2017

arXiv:1706.08128
submitted to JHEP
Overview

- Associated production of top quarks provides an interesting check of the standard model and window where new physics could show up
 - Provides measurements which are directly sensitive to the couplings of the top quark

- Measuring the $t\bar{t}+\gamma$ production cross section
 - Allows for probing the electroweak coupling of the top quark
 - Directly sensitive to the top quark charge
 - Any deviations from the SM prediction could be hints at new physics
tt+γ Cross Section Measurement

• Measuring the production cross section of tt+γ production using 19.7 fb\(^{-1}\) of data collected by the CMS experiment at a center of mass energy of 8 TeV

• Performed in the lepton+jets final state (e or μ)

• Fiducial cross section is measured relative to inclusive tt production

• arXiv:1706.08128 submitted to JHEP
Selection

• Selection is split into two levels:
 • **Top quark selection**: events with a top quark pair signature
 • **Photon selection**: passing the top quark selection and have at least one photon present

• **Top quark selection:**
 • Require exactly 1 lepton (e or mu)
 • Veto events with additional leptons passing loose requirements
 • At least 3 jets, one of which is b-tagged
 • $p_T^{\text{miss}} > 20 \text{ GeV}$

• **Photon Selection:**
 • At least one photon, $p_T > 25 \text{ GeV}$, $|\eta| < 1.44$, isolated from other activity in event
Top quark pair production

- Measurement is performed as a ratio of $t\bar{t}+\gamma$ to $t\bar{t}$ production cross sections:

$$R = \frac{\sigma_{t\bar{t}+\gamma}^{\text{fid}}}{\sigma_{t\bar{t}}} = \frac{N_{t\bar{t}+\gamma}}{N_{t\bar{t}}} \cdot \frac{\epsilon_{t\bar{t}}^\text{fit} A_{t\bar{t}}^\text{fit}}{N_{t\bar{t}}}$$

- Need to measure both the number of $t\bar{t}+\gamma$ events (after photon selection) and number of top quark pair events at top quark selection level.

- Fit to M_3 variable (mass of 3-jet combination with highest summed p_T) used to extract $N_{t\bar{t}}$

$e+\text{jets}$: $N_{t\bar{t}} = 162200 \pm 1600$ (stat)

$\mu+\text{jets}$: $N_{t\bar{t}} = 219100 \pm 1900$ (stat)

Distribution of M_3 after top quark selection fit

- 19.7 fb$^{-1}$ (8 TeV)

- Data points and histograms for different processes.
After photon selection, backgrounds can be split into two categories:

- Top pair events with fake photons
- Non-top processes with real photons ($W+\gamma$, $Z+\gamma$)

Each of these backgrounds is estimated using fits to different variables:

- $M3$ is used to distinguish top from non-top processes
- Photon charged hadron isolation can be used to separate prompt from nonprompt photons
Top quark purity

- Top quark purity (π_{tt}), defined as fraction of events coming from top pair events, measured with fit to M_3 distribution
 - Measured after the photon selection is applied
 - Templates for top events (tt or tt+γ), $W+\gamma$, and other backgrounds taken from simulation

<table>
<thead>
<tr>
<th>Event Type</th>
<th>π_{tt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e+\text{jets}$</td>
<td>0.70 ± 0.08 (stat)</td>
</tr>
<tr>
<td>$\mu+\text{jets}$</td>
<td>0.68 ± 0.06 (stat)</td>
</tr>
</tbody>
</table>
Photon purity

- Photon purity (π_{γ}), fraction of events coming from prompt photons, measured through a fit to the photon isolation
 - Prompt photons (or also misidentified electrons) will be isolated
 - Hadronic/nonprompt photons will be less isolated
- Templates for both derived from data
 - Isolated photons template taken from measuring isolation in random cone
 - Nonprompt template taken from inverting selection requirements on photon shower shape ($\sigma_{\eta\eta}$)

Results of fit to photon isolation

e+jets:
$\pi_{\gamma} = 0.57 \pm 0.06 \text{ (stat)}$

μ+jets:
$\pi_{\gamma} = 0.53 \pm 0.06 \text{ (stat)}$
N_{tt+\gamma} Measurement

- Combine the information from the top quark purity, photon purity, and number of events observed in data into a χ^2 function
 - Fit to rates of signal and primary background contributions ($V+\gamma$ and nonprompt photons)
 - Maximizing Likelihood function $L = e^{-\chi^2/2}$

$$
\chi^2 = \frac{(\pi_\gamma^{\text{data}} - \pi_\gamma^{\text{MC}})^2}{\sigma^2_{\pi_\gamma}} + \frac{(\pi_{tt}^{\text{data}} - \pi_{tt}^{\text{MC}})^2}{\sigma^2_{\pi_{tt}}} + \frac{(N_{\text{data}} - N_{\text{MC}})^2}{\sigma^2_N}
$$

- $\pi_\gamma^{\text{data(MC)}}$: photon purity in data (MC), with uncertainty σ_{π_γ}
- $\pi_{tt}^{\text{data(MC)}}$: top purity in data (MC), with uncertainty $\sigma_{\pi_{tt}}$
- $N_{\text{data(MC)}}$: number of events in data (MC), with uncertainty σ_N

e+jets:
\[N_{tt+\gamma} = 338 \pm 53 \text{ (stat)}\]

\(\mu\)+jets:
\[N_{tt+\gamma} = 442 \pm 69 \text{ (stat)}\]
Uncertainties

• For each systematic, measurement is repeated with each parameter varied within uncertainties

• Largest uncertainty from:
 • Statistical uncertainty in fit
 • Top quark mass: ±1 GeV change in mass used in simulation ($m_t=172.5$ GeV)
 • Jet energy scale uncertainties
 • Scale uncertainties, doubling and halving scale used in simulation ($\mu_R=\mu_F=Q=\sqrt{m_t^2+\sum p_T^2}$)

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical likelihood fit</td>
<td>15.5</td>
</tr>
<tr>
<td>Top quark mass</td>
<td>7.9</td>
</tr>
<tr>
<td>JES</td>
<td>6.9</td>
</tr>
<tr>
<td>Fact. and renorm. scale</td>
<td>6.7</td>
</tr>
<tr>
<td>ME/PS matching threshold</td>
<td>3.9</td>
</tr>
<tr>
<td>Photon energy scale</td>
<td>2.4</td>
</tr>
<tr>
<td>JER</td>
<td>2.3</td>
</tr>
<tr>
<td>Multijet estimate</td>
<td>2.0</td>
</tr>
<tr>
<td>Electron misid. rate</td>
<td>1.3</td>
</tr>
<tr>
<td>Z+jets scale factor</td>
<td>0.8</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.6</td>
</tr>
<tr>
<td>Background normalization</td>
<td>0.6</td>
</tr>
<tr>
<td>Top quark p_T reweighting</td>
<td>0.4</td>
</tr>
<tr>
<td>b tagging scale factor</td>
<td>0.3</td>
</tr>
<tr>
<td>Muon efficiency</td>
<td>0.3</td>
</tr>
<tr>
<td>Electron efficiency</td>
<td>0.1</td>
</tr>
<tr>
<td>PDFs</td>
<td>0.1</td>
</tr>
<tr>
<td>Muon energy scale</td>
<td>0.1</td>
</tr>
<tr>
<td>Electron energy scale</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>20.7</td>
</tr>
</tbody>
</table>
Results

\[R = \frac{\sigma_{tt+\gamma}^{\text{fid}}}{\sigma_{tt}} = \frac{N_{tt+\gamma}}{\epsilon_{tt+\gamma}} \cdot \frac{\epsilon_{\text{top}} A_{\text{top}}^{tt}}{N_{tt}} \]

- Cross section measured in fiducial region of ℓ+jets final state of the top decay with photon having $p_T > 25$ GeV & $|\eta| < 1.44$
- Efficiencies and acceptances are taken from simulation
- Cross section can be extracted by multiplying R by measured value of tt cross section

\[\sigma_{tt} = 244.9 \pm 1.4 \text{ (stat)}^{+6.3}_{-5.5} \text{ (syst)} \pm 6.4 \text{ (lumi)} \]

<table>
<thead>
<tr>
<th>Category</th>
<th>R</th>
<th>$\sigma_{tt+\gamma}^{\text{fid}}$ (fb)</th>
<th>$\sigma_{tt+\gamma} \times B$ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e+jets</td>
<td>$(5.7 \pm 1.8) \times 10^{-4}$</td>
<td>138 ± 45</td>
<td>582 ± 187</td>
</tr>
<tr>
<td>μ+jets</td>
<td>$(4.7 \pm 1.3) \times 10^{-4}$</td>
<td>115 ± 32</td>
<td>453 ± 124</td>
</tr>
<tr>
<td>Combination</td>
<td>$(5.2 \pm 1.1) \times 10^{-4}$</td>
<td>127 ± 27</td>
<td>515 ± 108</td>
</tr>
<tr>
<td>Theory</td>
<td>–</td>
<td>–</td>
<td>$592 \pm 71 \text{ (scales)} \pm 30 \text{ (PDFs)}$</td>
</tr>
</tbody>
</table>
Summary

- Measurement of the associated production of top quark-antiquark pair with a photon in the semileptonic final state presented
- Using 19.7 fb$^{-1}$ of data collected at center-of-mass energy of 8 TeV
- Ratio of the $t\bar{t}+\gamma$ to $t\bar{t}$ production cross sections measured to be
 \[
 R = \frac{\sigma_{t\bar{t}+\gamma}^{\text{fid.}}}{\sigma_{t\bar{t}}} = \left(5.2 \pm 1.1\right) \times 10^{-4}
 \]
- Cross section for $t\bar{t}+\gamma$ measured to be in agreement with SM prediction:
 \[
 \sigma_{t\bar{t}+\gamma}^{\text{fid.}} = 127 \pm 27 \text{ fb}
 \]
 \[
 \sigma_{t\bar{t}+\gamma} \times B = 515 \pm 108 \text{ fb}
 \]
Backup Slide
Signal Simulation

• $tt+\gamma$ MC is simulated in Madgraph v5.1.3.30

• 2-\rightarrow7 production
 • Photon can come be radiated from top quark, decay products of top quark, or ISR

• Generator level photon cuts:
 • $p_T > 13$ GeV
 • $|\eta| < 3.0$
 • $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} > 0.3$, between generated photon and other generated particles

• Overlap removal:
 • Events are removed from tt MC which fall within the $tt+\gamma$ signal definition to avoid double counting
Reconstructed Object Selection

Trigger:
- **e+jets:** $p_T > 27$ GeV, $|\eta| < 2.5$
- **μ+jets:** $p_T > 24$ GeV, $|\eta| < 2.1$

Electrons:
- $p_T > 35$ GeV
- $|\eta| < 2.5$
- $I_{rel} < 0.1$
- Tight ID
- Loose: $p_T > 20$, $|\eta| < 2.5$

Muons:
- $p_T > 26$ GeV
- $|\eta| < 2.1$
- $I_{rel} < 0.2$
- Tight ID
- Loose: $p_T > 10$, $|\eta| < 2.5$

Jets:
- anti-k_T, R=0.5 jets
- $p_T > 30$ GeV
- $|\eta| < 2.4$
- Energy corrected for pileup

Photons:
- $p_T > 25$ GeV
- $|\eta| < 1.44$ (ECAL barrel)
- Conversion rejection and identification requirements applied

B-tagging:
- Combined Secondary Vertex tagger
- “Medium” working point
- ~70% efficiency, 1-2% mistag rate
Fiducial Region Cuts

Cuts applied at generator level in MC

Electrons
- $p_T > 35$ GeV
- $|\eta| < 2.5$

Muons:
- $p_T > 26$ GeV
- $|\eta| < 2.1$

Jets:
- $p_T > 30$ GeV
- $|\eta| < 2.4$

Photons:
- $p_T > 25$ GeV
- $|\eta| < 1.44$ (ECAL barrel)

MET:
- $\sum p_T(\nu) > 20$ GeV

Require exactly one lepton, at least 3 jets (one coming from b), MET, and at least one photon
MC Event Categories

• Splitting MC events into 3 categories, based on where photon comes from
 • Genuine photons: events with a real, prompt photon
 • Misidentified electrons: reconstruction misidentifies a generated photon as an electron
 • Nonprompt/fake photons: reconstructed photon not matched to prompt photon or misidentified electron, or matched to generated non-prompt photon
Event Yields in the e+jets final state

<table>
<thead>
<tr>
<th>Sample</th>
<th>Genuine photon</th>
<th>Misid. electron</th>
<th>Nonprompt photon</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}+\gamma$</td>
<td>312 ± 17</td>
<td>0.2 ± 0.1</td>
<td>8.5 ± 0.9</td>
<td>321 ± 17</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>$-$</td>
<td>22 ± 3</td>
<td>215 ± 13</td>
<td>237 ± 14</td>
</tr>
<tr>
<td>W+\gamma</td>
<td>75 ± 25</td>
<td>$-$</td>
<td>$-$</td>
<td>75 ± 25</td>
</tr>
<tr>
<td>W+jets</td>
<td>$-$</td>
<td>$-$</td>
<td>60 ± 15</td>
<td>60 ± 15</td>
</tr>
<tr>
<td>Z+\gamma</td>
<td>14 ± 5</td>
<td>1.3 ± 1.1</td>
<td>$0.5^{+0.7}_{-0.5}$</td>
<td>16 ± 5</td>
</tr>
<tr>
<td>Z+jets</td>
<td>$-$</td>
<td>43 ± 28</td>
<td>11 ± 6</td>
<td>54 ± 30</td>
</tr>
<tr>
<td>Single t</td>
<td>11 ± 3</td>
<td>2.0 ± 1.3</td>
<td>16 ± 4</td>
<td>29 ± 7</td>
</tr>
<tr>
<td>QCD multijet</td>
<td>$-$</td>
<td>$-$</td>
<td>31 ± 18</td>
<td>31 ± 18</td>
</tr>
<tr>
<td>Total</td>
<td>412 ± 31</td>
<td>69 ± 29</td>
<td>342 ± 28</td>
<td>823 ± 52</td>
</tr>
<tr>
<td>Data</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>935</td>
</tr>
</tbody>
</table>

Event Yields in the µ+jets final state

<table>
<thead>
<tr>
<th>Sample</th>
<th>Genuine photon</th>
<th>Misid. electron</th>
<th>Nonprompt photon</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}+\gamma$</td>
<td>407 ± 23</td>
<td>0.4 ± 0.3</td>
<td>11 ± 1</td>
<td>418 ± 24</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>$-$</td>
<td>31 ± 5</td>
<td>291 ± 16</td>
<td>322 ± 17</td>
</tr>
<tr>
<td>W+\gamma</td>
<td>140 ± 41</td>
<td>$-$</td>
<td>9.0 ± 6.7</td>
<td>149 ± 45</td>
</tr>
<tr>
<td>W+jets</td>
<td>$-$</td>
<td>$-$</td>
<td>57 ± 14</td>
<td>57 ± 14</td>
</tr>
<tr>
<td>Z+\gamma</td>
<td>21 ± 7</td>
<td>$-$</td>
<td>1.4 ± 0.9</td>
<td>23 ± 7</td>
</tr>
<tr>
<td>Z+jets</td>
<td>$-$</td>
<td>$-$</td>
<td>9.6 ± 5.8</td>
<td>10 ± 6</td>
</tr>
<tr>
<td>Single t</td>
<td>12 ± 3</td>
<td>1.5 ± 1.3</td>
<td>25 ± 13</td>
<td>38 ± 14</td>
</tr>
<tr>
<td>QCD multijet</td>
<td>$-$</td>
<td>$-$</td>
<td>36 ± 20</td>
<td>36 ± 20</td>
</tr>
<tr>
<td>Total</td>
<td>580 ± 48</td>
<td>33 ± 5</td>
<td>440 ± 33</td>
<td>1053 ± 61</td>
</tr>
<tr>
<td>Data</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>1136</td>
</tr>
</tbody>
</table>
Likelihood Fit

\[\chi^2(SF_{tt+\gamma}, SF_{V+\gamma}, SF_{jet\rightarrow\gamma}) = \left(\frac{\pi_{\gamma}^{\text{data}} - \pi_{\gamma}^{\text{MC}}}{\sigma_{\gamma}^2} \right)^2 + \left(\frac{\pi_{tt}^{\text{data}} - \pi_{tt}^{\text{MC}}}{\sigma_{tt}^2} \right)^2 + \left(\frac{N_{\text{data}} - N_{\text{MC}}}{\sigma_N^2} \right)^2 \]

- Scale factors for \(tt+\gamma\), \(V+\gamma\), and nonprompt fake rates come into play in the MC predictions of the photon purity (\(\pi_\gamma^{\text{MC}}\)), top quark purity(\(\pi_{tt}^{\text{MC}}\)), and total number of events (\(N_{\text{MC}}\))
 - \(\pi_\gamma^{\text{MC}}\) = fraction of events in genuine photon or misid. electron categories
 - \(\pi_{tt}^{\text{MC}}\) = fraction of events coming from \(tt+\gamma\) or \(tt\)
 - \(N_{\text{MC}}\) = total number of MC events (effected by all three rates)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Genuine photon</th>
<th>Misid. electron</th>
<th>Nonprompt photon</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tt+\gamma)</td>
<td>312 ± 17</td>
<td>0.2 ± 0.1</td>
<td>8.5 ± 0.9</td>
<td>321 ± 17</td>
</tr>
<tr>
<td>(tt)</td>
<td>–</td>
<td>22 ± 3</td>
<td>215 ± 13</td>
<td>237 ± 14</td>
</tr>
<tr>
<td>(W+\gamma)</td>
<td>75 ± 25</td>
<td>–</td>
<td>–</td>
<td>75 ± 25</td>
</tr>
<tr>
<td>(W+\text{jets})</td>
<td>–</td>
<td>–</td>
<td>60 ± 15</td>
<td>60 ± 15</td>
</tr>
<tr>
<td>(Z+\gamma)</td>
<td>14 ± 5</td>
<td>1.3 ± 1.1</td>
<td>0.5^{+0.7}_{-0.5}</td>
<td>16 ± 5</td>
</tr>
<tr>
<td>(Z+\text{jets})</td>
<td>–</td>
<td>43 ± 28</td>
<td>11 ± 6</td>
<td>54 ± 30</td>
</tr>
<tr>
<td>Single t</td>
<td>11 ± 3</td>
<td>2.0 ± 1.3</td>
<td>16 ± 4</td>
<td>29 ± 7</td>
</tr>
<tr>
<td>QCD multijet</td>
<td>–</td>
<td>–</td>
<td>31 ± 18</td>
<td>31 ± 18</td>
</tr>
<tr>
<td>Total</td>
<td>412 ± 31</td>
<td>69 ± 29</td>
<td>342 ± 28</td>
<td>823 ± 52</td>
</tr>
<tr>
<td>Data</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>935</td>
</tr>
</tbody>
</table>