Search for H^\pm decaying to top and bottom quarks with Single Leptonic Final State at 13 TeV using the CMS Detector

Jangbae Lee
Brown University
on behalf of the CMS collaboration
Overview

- Higgs boson discovery provides last piece of the Standard Model
- Further investigations are underway to verify if this is really a SM Higgs
- Two Higgs Doublet Model (2HDM) extends the Standard Model (SM) and expects Charged Higgs
- Largest branching ratio of the charged Higgs in top and bottom quark channel
- Exclusion limit on $\tan \beta$ results from 8 TeV
Signatures

• Charged Higgs decays to top and bottom quarks

• The top quark decays to b quark and W boson

• Extra top quark and b quark from strong interactions

• Two W bosons are produced
 • One decays leptonically and other decays hadronically

• Only one lepton, electron or muon in the final state

• At least 3 b tagged jets, 1 lepton, and 2 other jets in the final state
Backgrounds

- Pair produced top quarks (TTbar) decaying single leptonically
 - Dominate background in signal and control regions, over ~80%

 - Categorization by flavor for jets from extra radiation
 - ttbar+2B : one additional b jet containing two b hadrons
 - ttbar+bb : at least two additional b jets, independent of the number of b hadrons in each b jets
 - ttbar+b : one additional b jet containing a single b hadron
 - ttbar+cc : at least one additional c jet, independent of the number of c hadrons in each c jets
 - ttbar + lf : no additional b or c jets

8/3/17

Jangbae Lee

Backgrounds

- **W+jets**
 - Leptonically decaying W boson
 - At least two b quarks produced

- **Single top**
 - At least 1 W boson and 1 b-quark
 - Mistagged Jets + Leptonically decaying W boson could mimic signal-like events

- **Diboson, Drell-Yan, and QCD multi-jet backgrounds**
Data and MC sets

- 2016 data with integrated luminosity 35.9 fb\(^{-1}\) collected by CMS detector
- Monte Carlo (MC) samples were generated with 25ns bunch spacing
- Event generators used for the MC samples
 - MADGRAPH5_aMC@NLO 2.2.2 : Signals, W+Jets, QCD-multijet, TOP DY+Jets, Diboson
 - POWHEG 2.6 : ttbar, TOP, Diboson
 - PYTHIA8.212
- GEANT4 was used for detector simulation
- Background MC samples are grouped into ttbar, TOP, EWK, and QCD multi-jet
Triggers

• Single lepton triggers used for increasing events selection efficiency

• All the triggers were used in logical ‘OR’ operation

• Electron triggers
 • Electron $p_T > 27$ GeV, $|\eta| < 2.1$, and Tight ID
 • Electron $p_T > 35$ GeV and Loose ID
 • Electron $p_T > 105$ GeV and Tight ID
 • Photon $p_T > 165$ GeV

• Muon triggers
 • Muon $p_T > 24$ GeV with isolation
 • Muon $p_T > 24$ GeV, reconstructed with hits in tracker
 • Muon $p_T > 50$ GeV

Recovering event selection efficiency in high p_T
Object Selections

- Electron
 - Multivariate Analysis (MVA) based Tight ID with custom working point, 88% efficiency in ttbar
 - Transverse Momentum (p_T) > 35 GeV and $|\eta| < 2.1$
 - Mini-Isolation < 0.1, The cone size depends on pT to increase efficiency at high energy
 - Electron veto: Loose ID where 95% efficiency in ttbar, $p_T > 10$ GeV, $|\eta| < 2.1$, Mini-Isolation < 0.4

- Muon
 - “Medium2016” ID, $p_T > 30$ GeV, $|\eta| < 2.4$, and Mini-Isolation < 0.1
 - Muon veto: Loose ID, $p_T > 10$ GeV, $|\eta| < 2.4$, and Mini-Isolation < 0.4

- Tau
 - Hadron plus Strip (HPS) algorithm based Tau, $p_T > 20$ GeV, $|\eta| < 2.3$, and ΔR with lepton > 0.4
 - Used for veto in e/\mu channels

- Jet
 - Reconstructed Jets with the anti-kT algorithm with a distance parameter of 0.4
 - Loose particle flow jet ID, $p_T > 40$ GeV, $|\eta| < 2.4$, Angular separation (ΔR) with lepton > 0.4

- B-tagging
 - $pfCombinedInclusiveSecondaryVertexV2$ (CSVv2) > 0.8484 where mistag rate is less $\sim 1\%$

- Missing Transverse Momentum (MET)
 - Negative vector sum of transverse energy from all particle flow object in an event
Baseline Event Selection

- Select events only passing logical ‘AND’ operation of following conditions
 - Exactly single electron or muon
 - Electron pT > 35 GeV and $|\eta| < 2.1$
 - Muon pT > 30 GeV and $|\eta| < 2.4$
 - Jet pT > 40 GeV
 - MET > 30 GeV
 - Number of jets ≥ 3 and Number of b-tagged jet ≥ 1
 - Minimum $\Delta \phi$ between MET and Jet > 0.05 in control regions of electron channel -> Suppressing QCD events leak
 - No Tau in electron and muon channels
Event Categorization

- Define control regions and maximization on signal sensitivity

4 Control Regions

1b/4j
1b/5j
1b/≥6j
2b/4j

5 Signal Regions

2b/5j
2b/≥6j
≥3b/4j
≥3b/5j
≥3b/≥6j

Expected U.L. (95% CL) (pb)

CMS
35.9 fb$^{-1}$ (13 TeV)

Work in Progress

CMS

35.9 fb$^{-1}$ (13 TeV)

Work in Progress

500

CMS

35.9 fb$^{-1}$ (13 TeV)

250

CMS

35.9 fb$^{-1}$ (13 TeV)

Work in Progress
Data/MC comparison in CR

- Good agreement between Data and MC in control regions within uncertainty.
Multivariate Analysis

- Boosted Decision Tree with adaptive boost method used

- BDT discriminator is trained to distinguish signal from TTbar background which is main background

- Due to limited statistics in low mass signals two mass region defined
 - Low : 180, 200, 220, 250, and 300 GeV
 - Medium : 350, 400, and 500 GeV

- High mass signals were trained separately, 800, 1000, 2000, and 3000 GeV

- 20 kinematic input variables used for developing BDT discriminators

- Training in inclusive signal regions

- Randomly split signal sample into Train/Test/Application with 25%/25%/50%

- For TTbar background two samples used for Train/Test and Application

- Optimization in depth and number of tree performed to obtain receiver operating characteristics (ROC)
Multivariate Analysis

- the scalar sum of the all jet transverse momenta, H_T
- minimum mass of lepton and b-jet, $\min[M(\ell, b)]$
- the mass of the b-jet pair with minimum separation, $M(b, b)$ with $\min[\Delta R(b, b)]$
- the separation between the lepton and b-jet with maximum p_T, $\Delta R(\ell, b)$ with $\max[p_T, \ell, b]$
- the separation between the lepton and leading jet, $\Delta R(\ell, j_1)$
- the separation between the lepton and sub-leading jet, $\Delta R(\ell, j_2)$
- the separation between the lepton and third leading jet, $\Delta R(\ell, j_3)$
- the separation between the lepton and leading b-jet, $\Delta R(\ell, b_1)$
- the separation between the lepton and b-jet pair where the separation between b-jet pair is minimum, $\Delta R(\ell, bb)$ with $\min[\Delta R(b, b)]$
- Centrality, the ratio of the sum of the transverse momentum and total energy of all jets
- the separation in η between furthest b-jet pair, $\max[\Delta \eta(b, b)]$
- averageCSV: this is p_T weighted average discriminator of the non b-tagged jets.
- average separation of b-jet pairs, ave[$\Delta R(b, b)$]
- The second Fox-Wolfram moment where all jets are included in the calculation, 2^{nd} FW moment
- the mass of the three jet system with maximum p_T, $M(jjj)$ with $\max[p_T(jjj)]$
- the transverse momentum of leading b-jet, $p_T(b_1)$
- minimum separation between b-jet pairs, $\min[\Delta R(b, b)]$
- minimum separation between the lepton and b-jet, $\min[\Delta R(\ell, b)]$
- the transverse mass of the leading lepton and the missing transverse energy, $M_T(\ell, E_T^{miss})$
- missing transverse energy, E_T^{miss}
Templates in SR/CR

Templates for other regions are in backup
Templates binning and Statistical Uncertainty

- Template binning choice
 - BDT template for Signal regions
 - Start from 200 uniform bins and rebin to have < 30% statistical uncertainty
 - HT template for Control regions
 - Start from 500 uniform bins and rebin to have < 30% statistical uncertainty

- Statistical Uncertainties in MC
 - Balow-Beeston lite methods used
 - Add additional nuisances on each bin if statistical uncertainty > 10%
 - Calculate uncertainty of the total background and assign to the dominant process
 - Advantage in reducing number of nuisances
Systematic Uncertainties

- Rate and Shape uncertainties are considered

- Renormalization and Factorization, Top pT, and b-tagging are most impact uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
<th>Signal</th>
<th>Background</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>2.5%</td>
<td>Yes</td>
<td>All</td>
<td>No</td>
</tr>
<tr>
<td>Electron Efficiency</td>
<td>3%</td>
<td>Yes</td>
<td>All</td>
<td>No</td>
</tr>
<tr>
<td>Muon Efficiency</td>
<td>4%</td>
<td>Yes</td>
<td>All</td>
<td>No</td>
</tr>
<tr>
<td>Tau Veto</td>
<td>3%</td>
<td>Yes</td>
<td>All</td>
<td>No</td>
</tr>
<tr>
<td>$t\bar{t} + 1f$ rate</td>
<td>50%</td>
<td>No</td>
<td>$t\bar{t} + 1f$</td>
<td>No</td>
</tr>
<tr>
<td>$t\bar{t} + cc$ rate</td>
<td>50%</td>
<td>No</td>
<td>$t\bar{t} + cc$</td>
<td>No</td>
</tr>
<tr>
<td>$t\bar{t} + 2b$ rate</td>
<td>50%</td>
<td>No</td>
<td>$t\bar{t} + 2b$</td>
<td>No</td>
</tr>
<tr>
<td>$t\bar{t} + bb$ rate</td>
<td>50%</td>
<td>No</td>
<td>$t\bar{t} + bb$</td>
<td>No</td>
</tr>
<tr>
<td>$t\bar{t} + b$ rate</td>
<td>50%</td>
<td>No</td>
<td>$t\bar{t} + b$</td>
<td>No</td>
</tr>
<tr>
<td>PDF</td>
<td>4.2%</td>
<td>No</td>
<td>$t\bar{t}$</td>
<td>No</td>
</tr>
<tr>
<td>PDF</td>
<td>4.0%</td>
<td>No</td>
<td>EWK</td>
<td>No</td>
</tr>
<tr>
<td>PDF</td>
<td>3.0%</td>
<td>No</td>
<td>TOP</td>
<td>No</td>
</tr>
<tr>
<td>Renorm./Fact. Energy Scale</td>
<td>$+2.4% - 3.5%$</td>
<td>No</td>
<td>$t\bar{t}$</td>
<td>Yes</td>
</tr>
<tr>
<td>Renorm./Fact. Energy Scale</td>
<td>2%</td>
<td>No</td>
<td>EWK</td>
<td>Yes</td>
</tr>
<tr>
<td>Renorm./Fact. Energy Scale</td>
<td>10%</td>
<td>No</td>
<td>TOP</td>
<td>Yes</td>
</tr>
<tr>
<td>Jet Energy Scale</td>
<td>$\pm \sigma(\eta)$</td>
<td>Yes</td>
<td>All</td>
<td>Yes</td>
</tr>
<tr>
<td>Jet Energy Resolution</td>
<td>$\pm \sigma(\eta)$</td>
<td>Yes</td>
<td>All</td>
<td>Yes</td>
</tr>
<tr>
<td>b/c tagging</td>
<td>$\pm \sigma(\eta)$</td>
<td>Yes</td>
<td>All</td>
<td>Yes</td>
</tr>
<tr>
<td>uds tag mis tagging</td>
<td>$\pm \sigma$</td>
<td>Yes</td>
<td>All</td>
<td>Yes</td>
</tr>
<tr>
<td>Pileup</td>
<td>$\sigma_{incl.} \pm 4.6%$</td>
<td>Yes</td>
<td>All</td>
<td>Yes</td>
</tr>
<tr>
<td>Top p_T</td>
<td>$\pm \Delta$(weighted, unweighted)</td>
<td>No</td>
<td>$t\bar{t}$</td>
<td>Yes</td>
</tr>
<tr>
<td>HT</td>
<td>env(upper fit, lower fit)</td>
<td>No</td>
<td>EWK</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Expected Results

- 95% CL expected upper limits on cross section of a charged Higgs boson production
 - Asymptotic approximation used for limits
 - BDT (HT) discriminant for SR (CR)
 - QCD multi-jet excluded since its yield less than 5%
 - The expected limit varies between 2 pb and 0.01 pb for Charged Higgs mass between 180 and 3000 GeV
Backup
Templates in SR/CR

< Events / 1.0 units >

35.9 fb⁻¹ (13 TeV)

CMS

SR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

SR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

SR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

SR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

SR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR

Work in Progress

35.9 fb⁻¹ (13 TeV)

CMS

CR
Data and MC samples

<table>
<thead>
<tr>
<th>Primary Dataset</th>
<th>Reconstruction Group</th>
<th>Background</th>
<th>Cross Section [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SingleMuon</td>
<td>Run2016B-03Feb2017_ver2-v2</td>
<td>tt</td>
<td>832.2 ± 0.7</td>
</tr>
<tr>
<td>SingleMuon</td>
<td>Run2016C-03Feb2017-v1</td>
<td>tt</td>
<td>832.6 ± 0.7</td>
</tr>
<tr>
<td>SingleMuon</td>
<td>Run2016D-03Feb2017-v1</td>
<td>tt</td>
<td>832.2 ± 0.6</td>
</tr>
<tr>
<td>SingleMuon</td>
<td>Run2016E-03Feb2017-v1</td>
<td>tt</td>
<td>364.5 ± 1.4</td>
</tr>
<tr>
<td>SingleMuon</td>
<td>Run2016G-03Feb2017-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleMuon</td>
<td>Run2016H-03Feb2017_ver2-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleMuon</td>
<td>Run2016H-03Feb2017_ver3-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleElectron</td>
<td>Run2016B-03Feb2017_ver2-v2</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleElectron</td>
<td>Run2016C-03Feb2017-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleElectron</td>
<td>Run2016D-03Feb2017-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleElectron</td>
<td>Run2016E-03Feb2017-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleElectron</td>
<td>Run2016F-03Feb2017-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleElectron</td>
<td>Run2016G-03Feb2017-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleElectron</td>
<td>Run2016H-03Feb2017_ver2-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>SingleElectron</td>
<td>Run2016H-03Feb2017_ver3-v1</td>
<td>tt</td>
<td>120.7 ± 0.7</td>
</tr>
<tr>
<td>Int. Lumi [fb⁻¹]</td>
<td>35.867</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QCD

<table>
<thead>
<tr>
<th>QCD</th>
<th>Generators</th>
<th>Cross Section [fb]</th>
<th>N_{jet}</th>
<th>N_{ev} - N_{mis}</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD.JT-1100to200</td>
<td>madgraphMLM-pythia8</td>
<td>2799000 ± 4100</td>
<td>1499270</td>
<td>404688</td>
</tr>
<tr>
<td>QCD.JT-2000to300</td>
<td>madgraphMLM-pythia8</td>
<td>171200 ± 380</td>
<td>1499061</td>
<td>402569</td>
</tr>
<tr>
<td>QCD.JT-3000to500</td>
<td>madgraphMLM-pythia8</td>
<td>34770 ± 75</td>
<td>1491475</td>
<td>395891</td>
</tr>
<tr>
<td>QCD.JT-5000to700</td>
<td>madgraphMLM-pythia8</td>
<td>32100 ± 7</td>
<td>1497522</td>
<td>390646</td>
</tr>
<tr>
<td>QCD.JT-7000to1000</td>
<td>madgraphMLM-pythia8</td>
<td>6831 ± 1.7</td>
<td>1496373</td>
<td>390221</td>
</tr>
<tr>
<td>QCD.JT-10000to1500</td>
<td>madgraphMLM-pythia8</td>
<td>1207.0 ± 0.5</td>
<td>1490688</td>
<td>387746</td>
</tr>
<tr>
<td>QCD.JT-15000to2000</td>
<td>madgraphMLM-pythia8</td>
<td>119.9 ± 0.6</td>
<td>1500000</td>
<td>400004</td>
</tr>
<tr>
<td>QCD.JT-20000toInf</td>
<td>madgraphMLM-pythia8</td>
<td>25.24 ± 0.2</td>
<td>1494646</td>
<td>376326</td>
</tr>
<tr>
<td>HplusToTB_M-180</td>
<td>amcatnlo-pythia8</td>
<td>994.54</td>
<td>1499270</td>
<td>404688</td>
</tr>
<tr>
<td>HplusToTB_M-200</td>
<td>amcatnlo-pythia8</td>
<td>824.53</td>
<td>1473805</td>
<td>400501</td>
</tr>
<tr>
<td>HplusToTB_M-220</td>
<td>amcatnlo-pythia8</td>
<td>683.58</td>
<td>1499061</td>
<td>402569</td>
</tr>
<tr>
<td>HplusToTB_M-250</td>
<td>amcatnlo-pythia8</td>
<td>524.25</td>
<td>1491475</td>
<td>395891</td>
</tr>
<tr>
<td>HplusToTB_M-300</td>
<td>amcatnlo-pythia8</td>
<td>343.80</td>
<td>1497522</td>
<td>390646</td>
</tr>
<tr>
<td>HplusToTB_M-350</td>
<td>amcatnlo-pythia8</td>
<td>231.22</td>
<td>1496373</td>
<td>390221</td>
</tr>
<tr>
<td>HplusToTB_M-400</td>
<td>amcatnlo-pythia8</td>
<td>151.14</td>
<td>1490688</td>
<td>387746</td>
</tr>
<tr>
<td>HplusToTB_M-500</td>
<td>amcatnlo-pythia8</td>
<td>78.557</td>
<td>1500000</td>
<td>400004</td>
</tr>
<tr>
<td>HplusToTB_M-800</td>
<td>amcatnlo-pythia8</td>
<td>13.065</td>
<td>1494646</td>
<td>376326</td>
</tr>
<tr>
<td>HplusToTB_M-1000</td>
<td>amcatnlo-pythia8</td>
<td>4.7456</td>
<td>1491600</td>
<td>376708</td>
</tr>
<tr>
<td>HplusToTB_M-2000</td>
<td>amcatnlo-pythia8</td>
<td>0.8071</td>
<td>1500000</td>
<td>373174</td>
</tr>
<tr>
<td>HplusToTB_M-3000</td>
<td>amcatnlo-pythia8</td>
<td>0.0016</td>
<td>1497017</td>
<td>377717</td>
</tr>
</tbody>
</table>