Sommerfeld-Enhanced J-Factors for Dwarf Spheroidal Galaxies

Jason Kumar

University of Hawaii

(PRD 95, 123008 (2017) [1702.00408])
collaborators

• Kimberly Boddy
• Louie Strigari
• Mei-Yu Wang
dwarfs, J-factors, and Sommerfeld

• searches for photons arising from dark matter annihilation in dwarf spheroidal galaxies (dSph)
 – indirect detection strategy with good control over background systematics
• photon flux from dSph, can be factorized into two pieces....
• ... a particle physics factor
 – depends on annihilation cross section, channel, particle mass
• and an astrophysics factor
 – depends on the dark matter density profile of the target
 – encoded in the J-factor
• but if DM annihilation is Sommerfeld-enhanced at low velocity
 – then velocity-distribution also come into play
• goal is to compute the Sommerfeld-enhanced J-factor (J_s) ...
• ... and see impact on dSph searches
main features

• Sommerfeld-enhanced annihilation $\rightarrow \sigma v \propto 1/v$

• relative velocities in dSphs tend to be much smaller than in Milky Way

• can get a large enhancement to annihilation cross section

• considerable variation in velocity distribution between dSphs, and for different choices of density profile

• ordering of dwarf J-factors can change

• important implications for indirect detection searches
what is the J-factor?

- the photon flux depends on
 - particle physics of the dark matter model
 - independent of target
 - astrophysics of the target
 - mostly independent of dark matter model
- J-factor is the astrophysics factor
 - larger J = larger flux, regardless of particles physics model
- but factorization based on an assumption
 - $\sigma_A v$ independent of v
- what happens for Sommerfeld?

$$\frac{d\Phi}{dE} = \frac{1}{4 \pi} \frac{dN}{dE} \int_{\Delta \Omega} d\Omega \int d\ell$$

$$\int d^3 v_1 \frac{f(\vec{r}(\ell, \Omega), \vec{v}_1)}{m_X} \int d^3 v_2 \frac{f(\vec{r}(\ell, \Omega), \vec{v}_2)}{m_X}$$

$$\times \frac{\langle \sigma_A |\vec{v}_1 - \vec{v}_2| \rangle}{2}$$

$$= \frac{\langle \sigma_A v \rangle dN}{8 \pi m_X^2 dE} \times J$$

$$J \equiv \int_{\Delta \Omega} d\Omega \int d\ell \left[\rho(\vec{r}(\ell, \Omega)) \right]^2$$

$$\rho(\vec{r}) = \int d^3 v f(\vec{r}, \vec{v})$$

f = dark matter velocity distribution
Sommerfeld-enhancement

- essential setup
 - dark matter annihilation is a contact interaction
 - but dark matter self-interacts through a long range force
 - mediator mass = m_Φ
 - so have to rescale matrix element by wavefunction at the origin
- actual potential is Yukawa
 - can solve numerically
 - but can solve analytically if we approximate it with a Hulthén potential (within 10%)

- $\langle \sigma_A v \rangle \equiv \langle \sigma_A v \rangle_0 \times S(v)$
- $V(r) = -(\alpha_X / r) \exp(-m_\Phi r)$
- four regimes for Hulthén
- $m_\Phi \gg \alpha_X m_X :$ non-enhanced
 - $S = 1$
- $m_\Phi \ll \alpha_X m_X :$ Coulomb limit
 - $S(v) = 2\pi \alpha_X / v$
- $\alpha_X m_X \ll m_\Phi \ll \alpha_X m_X :$ saturation
 - $S(v) = 16 \alpha_X m_X / m_\Phi$
- $m_\Phi = 6\alpha_X m_X / (\pi^2 n^2) \ll \alpha_X m_X :$ resonance
 - $S = 4\alpha_X^2 / v^2 n^2$ (cutoff at small v)
- focus: non-enhanced v. Coulomb
defining J_S

- just need to absorb $S(v)$ into definition of astrophysical factor
- new factor, J_S, encodes astro. info needed to determine $d\Phi/dE$ for Sommerfeld-enhanced case
- need the DM velocity distribution
 - obtain it from stellar data, using Eddington formula
- what it amounts to:
 - assume $f(r,\nu)$ spherically-sym., isotropic
 - then f depends only on $\epsilon = \nu^2/2 + \Psi(r)$
 - $\rho(r)$ determines $f(r,\nu)$

\[
J_S \equiv \int_{\Delta \Omega} d\Omega \int d\ell \\
\int d^3\nu_1 f(r(\ell,\Omega), \nu_1) \int d^3\nu_2 f(r(\ell,\Omega), \nu_2) \\
\times S(|\nu_1 - \nu_2|)
\]

\[
\frac{d\Phi}{dE} = \frac{\langle \sigma_A \nu \rangle_0}{8\pi m_X^2} \frac{dN}{dE} \times J_S
\]

$\Psi(r)$ = gravitational potential
determining \(f(r,v) \)

- **strategy**
 - assume NFW profile
 - just need parameters
 - fixes gravitational potential
 - assume Plummer stellar profile
 - find stellar velocity dispersion using Eddington formula and NFW gravitational potential
 - find NFW parameters by matching stellar velocity relation, Aquarius \(V_{\text{max}} - r_{\text{max}} \) relation
 - now Eddington formula determines DM velocity distribution

\[
\rho_{\text{NFW}}(r) = \frac{\rho_s}{\left(\frac{r}{r_s} \right) \left(1 + \frac{r}{r_s} \right)^2}
\]

\[
\psi_{\text{NFW}}(r) = -4\pi G_N \rho_s \frac{r_s^3}{r} \ln \left(1 + \frac{r}{r_s} \right)
\]

\[
f(\varepsilon) = \frac{1}{\sqrt{8\pi}^2} \int_{\varepsilon}^{0} \frac{d\psi}{\sqrt{\varepsilon - \psi}} \frac{d^2\rho}{d\psi^2}
\]

\[
\varepsilon \equiv \frac{v^2}{2} + \psi(r) < 0
\]

\[
\rho(r) = 4\pi \int_0^{\sqrt{-2\psi(r)}} dv \ v^2 f(r,v)
\]
velocity profiles

\[V_{\text{max}} = 0.465(4\pi G \rho_s r_s^2)^{1/2} \text{max. circ velocity, at radius } r_{\text{max}} = 2.16 r_s \]

intersection of stellar fit and fit to Aquarius (Martinez, Bullock, Kaplinghat, Strigari, Trotta 0902.4715)
J_S

$\epsilon_\phi \equiv m_\phi / \alpha_x m_x$

resonances

Reticulum II

Coma Berenices

Segue 1

Coulomb $\propto \alpha_x = 10^{-2}$

non-enhanced

$\Delta \Omega = 2.4 \times 10^{-4}$
upshot

• ordering of J_S-factors can change between “ordinary” s-wave limit and Sommerfeld-enhanced Coulomb limit
• affects how we would interpret any gamma-ray excess
• suppose we see an excess in a dwarf
 – ask if an excess is seen in other dwarfs with larger J-factors, where you expect a larger flux
 – if not, would call into question the dark matter interpretation
 – but using J_S-factor may resolve the tension
• similarly, if multiple excesses are seen, the pattern may point to Sommerfeld-enhancement (or not)
• applications extend to any new dwarfs which are found
 – potential to find excesses in new dwarfs
 – important part of analysis of dark matter interpretation
a general analysis

- say $\rho(r) = \rho_s \tilde{\rho}(r / r_s)$
- say we integrate J-factor over essentially entire dwarf
- J, J_S-factors \textit{parametrically determined} by dimen. analysis
 - $V_{\text{max}} \propto (G_N \rho_s)^{1/2} r_s$ (Virial Thm)
 - $J \propto \rho_s^2 r_s^3 / D^2 \propto V_{\text{max}}^4 / r_{\text{max}} D^2$
 - $J_S \propto \rho_s^{3/2} r_s^2 / D^2 \propto V_{\text{max}}^3 / r_{\text{max}} D^2$
 - Coulomb limit
- if one point is to upper left of another, J-J_S ordering changes
- valid in the large angle limit, but instructive even for fixed angle

D = distance to dwarf
conclusion

- J-factors of dwarf spheroidal galaxies change dramatically if dark matter annihilation is Sommerfeld-enhanced
- J-factors enhanced, as expected, but ordering can change
- modifies standard consistency check for dark matter interpretation

- more dSphs being found by DES, etc. (see talk by Alex Drlica-Wagner)
- if excesses are found, need to remember Sommerfeld-enhancement when checking consistency
- Reticulum II?

Mahalo!
Back-up slides
idea behind Eddington formalism

• velocity distribution $f(r,v)$ is essentially the phase space density
• assume particles move only under a collective gravitational central potential (not two-body scattering)
• classical path depends only on integrals of motion, E and L
• Jean’s Theorem – phase space distribution depends only on integrals of motion --> why?
 – if two phase space points have the same integrals of motion, any particles at one point will be (or once were) at the other
 – phase space density along path is constant (Liouville’s Theorem)
 – so phase space density has to be a function on only the integrals of motion
• if velocity distribution is spherically symmetric (depends on r, not r) and isotropic (depends on v, not v), then velocity distribution depends only on E, not L
Plummer profile

• fit M and a from stellar data
• \(r_h \sim 1.3 \ a = \) half-light radius
• from Eddington formula, stellar velocity dispersion now depends on NFW parameters, \(\rho_s \) and \(r_s \)
• matching to stellar velocity dispersion to data determines an allowed band for \(r_{\text{max}} \), \(V_{\text{max}} \)

\[
\rho_p(r) = \left(\frac{3M}{4\pi a^3} \right) \left(1 + \frac{r^2}{a^2} \right)^{-\frac{5}{2}}
\]
Hulthen potential

\[V_H(r) = -\frac{\alpha_x \left(\frac{\pi^2 m_\phi}{6} \right) e^{-\left(\frac{\pi^2 m_\phi}{6}\right)r}}{1 - e^{-\left(\frac{\pi^2 m_\phi}{6}\right)r}} - \frac{\alpha_x e^{-m_\phi r}}{r} \]

\[S(v) = \frac{\pi}{\varepsilon_v} \frac{\sinh \left(\frac{2\pi \varepsilon_v}{\pi^2 \varepsilon_\phi / 6} \right)}{\cosh \left(\frac{2\pi \varepsilon_v}{\pi^2 \varepsilon_\phi / 6} \right) - \cos \left(2\pi \frac{1}{\pi^2 \varepsilon_\phi / 6} - \frac{\varepsilon_v^2}{\left(\pi^2 \varepsilon_\phi / 6 \right)^2} \right)} \]

\[\varepsilon_v \equiv \frac{v}{2\alpha_x} \]

\[\varepsilon_\phi \equiv \frac{m_\phi}{\alpha_x m_x} \]

Cassel, 0903.5307