Fermilab

Measurement of Reconstructed **Charged Particle Multiplicities of Neutrino Interactions in MicroBooNE**

Aleena Rafique for MicroBooNE Collaboration Kansas State University DPF 2017 08/01/2017

Physics Motivations

- Very little knowledge of v-Ar interaction measurements exists till date
- Need to understand these interactions for future short and long baseline LArTPCs
- Need to test widely used GENIE for neutrinos interactions on Ar targets

Neutrino Interactions

Charged Current Interactions

Gives information about neutrino

No information of neutrino flavor

Charged Particle Multiplicity

- Number of reconstructed charged particles exiting the target nuclei at the neutrino interaction point.
 - Inclusive study
 - Mainly μ^{\pm} , π^{\pm} , and p
 - Track requirement imply kinetic energy thresholds ~82MeV for p, 37MeV for μ^{\pm} and π^{\pm}
 - Primary + secondary interaction particles

Why Charged Particle Multiplicity

- Gives knowledge of v-Ar interactions in form of directly observable quantity
- Provides a stringent test for neutrino event generators inclusively.
- Expand the knowledge of v-Ar scattering required by the DUNE neutrino CP violation search experiment.
- Early and relatively simple measurement
 - minimal kinematic properties of the final state particles are imposed.
 - does not require complexity associated with particle ID
- First measurement of charged track multiplicity in v_{μ} CC interactions in argon.

- 2. Average beam energy = 800 MeV
- 3. Substantial cosmic ray backgrounds
- 4. 3 anode wire planes
- 5. 32 8-inch PMTs
- 6. Collecting neutrino data since Oct, 2015

- GeV range
- Search for short baseline neutrino 2. oscillations
- Detector R&D for future large scale 3. LArTPC detectors (e.g DUNE)

Principle of LArTPC

LArTPCs make 3D reconstruction possible.

- Wire planes give 2D position information
- The third dimension is obtained by combining timing information (t_0) with drift velocity (v_d) \rightarrow hence, a "Time projection chamber"

Cosmic rays in MicroBooNE

- Causes of substantial cosmic rays in MicroBooNE:
 - Near to surface operation
 - Long electron drift window (about 2.3 msec maximum drift time)

Cosmic removal first pass: Require scintillation light at the beam arrival time (1.6µs)

Challenge remains where cosmics and neutrinos are in same event ¹⁰

Candidate Neutrino Event Displays

Candidate Neutrino Event Displays

Analysis Chain

14

Multiple Coulomb Scattering

Scattering is more pronounced along the downstream end of the track as the momentum decreases.

- Muons from neutrinos CC interactions are usually forward-going.
- Cosmic rays travel forward and backward with roughly equal prob.

Sub samples	On-beam Data		Off-beam Data		BNB+Cosmic Default MC	
$\mathbf{PH}, \mathbf{MCS}$	events	acceptance rates	\mathbf{events}	acceptance rates	events	acceptance rates
pass, pass	847	(44%)	1263	(24%)	2629	(62%)
pass, fail	367	(19%)	1087	(21%)	737	(18%)
fail, pass	321	(17%)	1141	(22%)	440	(10%)
fail, fail	387	(20%)	1776	(34%)	403	(10%)

Signal Extraction Model

Subsample #	On/off-beam	PH	MCS
1	On-beam	pass	pass
2	On-beam	pass	fail
3	On-beam	fail	pass
4	On-beam	fail	fail
5	Off-beam	pass	pass
6	Off-beam	pass	fail
7	Off-beam	fail	pass
8	Off-beam	fail	fail

Relate number of events in each of 8 subsamples to:

- Number of on-beam neutrinos
- Number of on-beam cosmics
- Number of off-beam cosmics
- Probability that a neutrino or cosmic passes the PH or MCS tests

No dependence on off-beam to on-beam normalization Nearly model independent

Expectations for Observed Charged Particle Multiplicity Distributions

Common feed-down occurrence is due to efficiency*acceptance effects.

Uncertainty Estimates

		Uncertainty Estimates				
Uncertainty Sources		mult=1	mult=2	mult=3	mult=4	mult=5
	Data statistics	7%	10%	38%	100%	_
	MC statistics	3%	4%	7%	21%	50%
	Short track efficiency	7%	11%	25%	33%	44%
Long track efficiency		1%	2%	4%	7%	9%
Fixed model parameter systematics		2%	2%	0%	0%	0%
Flux shape systematics		0%	0.4%	0.2%	0.5%	0.8%
Electron lifetime systematics		0.5%	0.1%	6%	5%	5%

Multiplicity Result Plot

Public Note: MICROBOONE-NOTE-1024-PUB

Conclusion & Outlook

• Conclusion:

- Measured charged particle multiplicity in v_{μ} CC interactions in Ar for first time
- Developed and validated data driven method to determine signal and cosmic ray background contributions
- Compared charged particle multiplicity from data and different generator models
- Models are consistent within uncertainties with the data
- Hint for slight discrepancy in data and MC in higher multiplicity bins
- Public Note:
- <u>http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1024-PUB.pdf</u>
- Outlook:
 - Compare other kinematic properties of particles emerging from interaction vertex with different models.
 - Compare data with wider range of models
 - Working towards a publication (stay tuned)

Short Track Efficiency Uncertainties

 From Pandora public note*, reco efficiency of proton/pion at 20 hit threshold is 0.45±0.05

Dominant systematic uncertainty

$\frac{\Delta P_n}{P_n}$ Default $\frac{\Delta P_n}{P_n}$ MEC $\frac{\Delta P_n}{P_n}$ TEM Observed multiplicity +7%+7%+8%-12%-12%-11%-25%-25%-25%3 -33%-36%-39%-44%-48%5

Overall eff. $\propto \epsilon^{(no of short tracks)}$

