Solar and Supernova Neutrinos in Super-Kamiokande

Scott Locke

University of California, Irvine

APS DPF 2017, Fermilab

Super Kamiokande Detector

39.3 m

- 50kton water Cherenkov
 - Ultrapure Water
- 22.5 kton fiducial volume (32 kton for SN burst)
- 11, 129 20-inch PMTs (inner), 1885 of 8-inch PMTs (outer)
- Phase Period inner PMTs coverage
- SK-I 1996-2001 11,146 40%
- SK-II 2002-2005 5,182 19%
- SK-III 2006-2008 11,129 40%
- SK-IV 2008-2018 (same as SK-III with new electronics)
- SK-Gd 20XX-
- ~300 kt-years exposure
- Detects neutrinos from many sources
- T2K far detector

Solar Neutrinos

- Recently published results
 - PRD94, 052010 (Shown this slide)
- Neutrino oscillations
 - Solar MSW
 - Terrestrial Effects

(Q._)=0.316^{+0.00}

 $(\Theta_{10})=0.307^{+0.013}$

Solar+

KAMLAND

Solar

Globa

18

14 13

12

11

10 9 8

م² in 10⁻⁵eV²

=0.308±0.014

sin²(Θ_{r_0})=0.0219±0.0014

KamLAND

Day/Night Asymmetry

- Look for differences in neutrino flux seen from day/night
 - Effects of earth matter on neutrino oscillation
- Asymmetry defined as difference between day and night flux:

$$A = \frac{D - N}{\frac{1}{2}(D + N)}$$

A. Renshaw, Phys. Rev. Lett. 112, 091805 (2014)

4

Data Set for Combined Analysis

• Published Data (PRD 94, 052010 (2016))

Phase	Days	Spectrum E (MeV kin)	D/N E ≥ (MeV kin)
I	1496	4.5-19.5	4.5
П	791	6.5-19.5	7.0
III	548	4.0-19.5	4.5
IV	1664	3.5-19.5	4.5

- SNO: PRC88,025501 (2013)
- Radiochemical : Cl, Ga
 - Ga rate: 66.1+/-3.1 SNU (All Ga global) (PRC80, 015807(2009))
 - Cl rate: 2.56+/-0.23 SNU (Astrophys. J. 496, 505 (1998))
- Borexino : ⁷Be flux (PRL107, 141302 (2011))
- KamLAND : reactor measurement (PRD88, 033001 (2013))
- ⁸B spectrum : Winter 2006 (PRC73, 025503 (2006))

SK-IV Solar Neutrino Signal [$cos(\Theta_{sun})$ distribution]

Locke, UCI, Solar and Supernova Neutrinos in SuperK

Vertex Distribution

- Shown at right, plot area is normal 22.5 kton FV of SK
 - Above 5.0 MeV Kinetic, use usual 22.5 kton FV
- Below 5.0 MeV, tighter FV cuts are applied
- Scale: (events/day/bin) **low**→high

4.0 – 4.5 MeV

(8.8 kt)

3.5 – 4.0 MeV

(8.8 kt)

Locke, UCI, Solar and Supernova Neutrinos in SuperK

2017

Solar Analysis Updates

SK-IV Solar Neutrino Energy Spectrum SK-IV 2645 days

Preliminary

- Updated spectrum analysis
 - Total live time: 5480 days
 - SK-IV: now 2645 days
 - PRD94, 052010: 1664
- Preliminary periodic modulation analysis
- Energy scale improvement
- Spallation Studies
- Radon BG
 - "Measurement of Radon Concentration in Super-Kamiokande's Buffer Gas", NIM A, in press (DOI: 10.1016/j.nima.2017.04.037)

(MC flux = 5.25x10⁶ cm²/s from SNO NC)

SK I-IV Spectral Data

- Spectrum is:
 - Consistent to within ~1 σ of the MSW upturn for Solar best fit
 - ~2σ tension of the MSW upturn for Solar + KamLAND best fit parameters
- SK I-IV: 83 Bins
- Quadratic Fit:

χ² = 75.5/80 d.o.f.

• Exponential Fit:

Preliminary

9

June 2017

Periodic Modulation in SK IV

- Look for periodicity of frequency, f •
- Previously visited in PRD68, 092002 • (2003)
 - SK I, 1496 days data with 4.5-19.5 MeV kinetic
 - 5-day long samples •
 - Lomb-Scargle (LS) method to check power
- Peak referenced by researchers at roughly 9.43/year
 - Improved analysis
- With new method, revisited SK I data with Generalized LS method
- Preliminary search in SK-IV for frequency • region 5-15/year

Periodic Modulation in SK IV

• Data:

- SK-I: 1496days, 5-day long sample, 4.5-19.5 MeV kinetic
- SK-IV: 1664 days, 5-day long sample, 4.5-19.5 MeV kinetic
- Generalized LS method (with symmetric error)
- 5 15/year
- Maximum not found at 9.43/year for SK IV data set

Improvements to Energy Scale

- PMT Gain increasing with time
- Dark Rate changing with time as well
- Currently implementing these effects in simulation and energy resolution scale for reduction in energy scale uncertainty
- These variations are not currently used for low energy scale calculations. Working to implement in the future

Preliminary

Year

Energy Scale (Cont'd)

- Examine decay electrons from stopping muons
- Spectrum becomes more stable.
- Reminder, gain correction not yet implemented

(Looking at N_{eff} , effective number of hit PMTs used for energy scale for low energy events)

DT Energy Calibration

- Deuterium-Tritium Generator produces thousands of 14 MeV neutrons which interact with ¹⁶O in water to make ¹⁶N
 - ¹⁶N beta decays back to ¹⁶O (τ = 10.3s)
- Stable after gain correction

LINAC Calibration

- Monochromatic Electrons
 - Ranging in energy from 4-20 MeV
- Remain stable after gain correction

June 2017

5

Position

6

Astropart. 60 (2015) 41

Spallation Studies

- Spallation is one of the leading backgrounds in solar and DSNB analysis
- Beacom and Li predict many neutrons produced in the hadronic shower from a spallation causing muon
- Using Wideband-Intelligent Trigger (WIT), we have a lower threshold to look for 2.2 MeV gammas from n+p production (Astropart. 60 (2015) 41)

Spallation Studies

- Initial Data Set:
 - ~6 weeks of data
 - 20-500 µs after muon
 - E < 5.5 MeV kin
 - <5m from track
 - Basic cut used on some of the data
- Sharply peaked closer to the track

Spallation Studies

- Candidates tightly correlated to each other
- dt spectrum consistent with AmBe
- We see the neutron candidates
- Need to investigate further

SK-GD

- Dope Water with Gd₂(SO₄)₃
 - Reduce $\nu_e\text{-bar}$ BG
 - ~10k events for 8.5 kpc (galactic center) supernova
- Signal:
 - Prompt positron followed by 8 MeV gamma cascade (~4.5 MeV reconstructed) or 2.2 MeV gamma
 - ΔT ~ 30μs
 - ~50cm vertex correlation

SK-GD Expected Sensitivity

DSNB flux: Horiuchi, Beacom and Dwek, PRD, 79, 083013 (2009)

 It depends on typical/actual SN emission spectrum

DSNB events number with 1	10 years observation
---------------------------	----------------------

Total (positron) energy MeV

HBD models	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	significance (2 energy bin)
T _{eff} 8MeV	11.3	19.9	31.2	5.3 σ
T _{eff} 6MeV	11.3	13.5	24.8	4.3 σ
T _{eff} 4MeV	7.7	4.8	12.5	2.5 σ
T _{eff} SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	

Locke, UCI, Solar and Supernova Neutrinos in SuperK

SK-GD: New Water System

SK-Gd: Moving Forward

- T_0 : Open tank, fix leak, fill, and check pure water results • T_2 : Further load with Gd, to .1% (100 tons $Gd_2(SO_4)_3$)
- T₁: Begin loading Gd, up to 0.01%
 Constant monitoring of water (10 tons Gd₂(SO₄)₃) and take observation

Locke, UCI, Solar and Supernova Neutrinos in SuperK

Summary

- Solar and Supernova neutrinos are the main focus of the Low Energy group
 - Spectrum consistent to within $\sim 1\sigma$ of the MSW upturn for Solar best fit
 - Tension of ~2 σ of the MSW upturn for Solar + KamLAND best fit parameters
- Partial updates for the 2645 day sample, and SK IV modulation analysis.
- Improvements are underway for the energy spectrum, with ongoing efforts for gain correction and various continual calibration data.
- Efforts in removing spallation BG are progressing
- SK-Gd is on track, tank opening slated for 2018

Super-Kamiokande Collaboration

- 10 nations
- ~42 institutions
- ~160 Researchers
- As of June 2017