Fermilab **ENERGY** Office of Science

Front-End Electronics Scheme for the Mu2e Straw Tracker

DPF 2017 Manolis Kargiantoulakis, for the Mu2e Collaboration 08/03/2017

Mu2e in a slide

- Overview of experiment and apparatus
 - Y. Oksuzian: The Mu2e experiment in Fermilab
- Mu2e will search for signatures of Charged Lepton Flavor Violation (CLFV)
 - New Physics sensitivity up to mass scales of 10,000 GeV
 - A very important test to guide future of HEP theory and experiments

Detector Solenoid

- CLFV process: Neutrino-less conversion of muon into electron in field of Al nucleus.
 - Characteristic signature: ~105 MeV conversion electron
 - Spiraling in helical orbit from AI stopping target
- The Mu2e Tracker: primary detector for the experiment.
 Designed to efficiently detect conversion electron and reconstruct trajectory
 - Required resolution 180 keV @ 105 MeV, or <0.18%
 - Operation in vacuum and in magnetic field
 - Must reject backgrounds from conventional processes

Tracker straw tubes

Detecting element: Gas drift tubes, or "straws"

- 5mm diameter, 0.5-1.2m long
- 15µm mylar wall, metalized
- 25µm gold-plated tungsten wire at ~1450V
- Gas Ar:CO₂ 80:20 at 1atm

Excellent fit to tracker requirements

- Low mass, minimize multiple scattering
- Highly segmented, handle high rates
- Operation in vacuum (10⁻⁴ Torr), straws must not leak
- Reliable lifetime of 10 yrs, must operate for a full year without service

Minimal unit fully instrumented, including front-end electronics: 120° panel of 96 straws

Track

120° panel of 2x48 straws, two staggered layers

DPF 2017

5 mm

Tracker Front-End Electronics

Front-End Electronics (FEE)

- Readout of straw signals
- Signal shaping and processing
- Digitization and transmission to DAQ

Requirements:

- Supply HV to straws (and capability for remote HV disconnect)
- B-field perturbation <1G in the active detector region
- Sustain radiation damage from target
- Low power <10kW within cooling capabilities
- <12 \times 96 dead channels in 5 yrs at 90% CL

Measurements:

- TDC measurement of drift time resolution: 1 ns (<200 µm drift radius)
- Straw readout from both ends for time-difference measurement – yields hit position along straw axis, <4cm resolution
- ADC for dE/dx measurement to identify highly-ionizing proton hits

FEE design schematic

Preamplifier and Shaper

- 2- channel preamp boards connecting to straws, mounted on analog motherboard
- Straw signal readout
 - Low-noise high-speed input stage
 - SiGe technology BJT
 - Active 300Ω termination to avoid reflections
 - Differential output for good CMRR
- Provide HV and ground to straws
 - Remote disconnect from HV via thermal fuse
- Shaping of straw signal before digitization
 - Fast rise, remove long tail from ion motion
- Calibration system for charge injection that mimics e⁻ pulse

Signal (mV)

30

20

10

-10

• Reading out both straw ends allows measurement of time difference Δt

between threshold crossings

- Also significantly reduces noise rate by requiring coincidence
- Δt dependent on hit location along straw axis
 - Position resolution from Fe55 source measurement shown below: < 3 cm
 - Very important for pattern recognition

Competing requirements

 \rightarrow More noise hits or efficiency loss

- D1,D2: diodes offer shunt path to ground
 - Their capacitance limits BW
 - \rightarrow loss in rising edge timing resolution

D1N914B

BFP640

R10 6.8K

 \mathcal{M}

D1N914B

FEE scheme for the Mu2e Straw Tracker Detector

Straw

Digitization

Each straw end goes into comparator and TDC (implemented in FPGA) Two ends are analog summed and into 12-bit ADC, sampling at 50MHz Data packaged (FPGA) and sent to ROC

Readout Controller

Receives and buffers data from digitizer FPGAs Duplex optical communication to DAQ Panel control and monitoring

Digitization and Readout

All signals routed to DRAC – Digitizer Readout Assembler and Controller

• Serves entire panel (2×96 TDCs and 96 ADCs)

TDC in FPGA

- Scheme loosely based on: Wu et al., The 10-ps Wave Union TDC, FERMILAB-CONF-08-498-E
- Subdivide between clock ticks by freezing a fast signal propagating through a delay chain
- Non-uniform delays between bit transitions.
 Resolution limited by transitions across boundaries.
- Implement multiple chains to improve resolution

 — Resolution requirement ~70 ps already achieved with adequate resources

11

FEE scheme for the Mu2e Straw Tracker Detector

ADC data from complete FEE chain

- ADC for dE/dx measurement to identify and reject proton hits
 - 12-bit, 50MS/s
- Data shown here acquired through complete FEE chain:
 Straws → Preamp → DRAC → PC
 - HDMI cables instead of motherboards
 - No optical link to DAQ, just serial readout

 \rightarrow A very significant milestone

Fe55 spectrum from source placed on straws

ADC samples from calibration charge injection. Parameters configurable at run time.

Radiation tolerance

- After large simulation efforts for shielding and mitigation options
- Conservative approach adopted by experiment that FEE survives x12 of expected dose.
- Radiation campaign identified weak points in the system. One is SF2 FPGA
 - Lost programmability at ~15 krad
 - Significant delay increases at ~60 krad
- Plan to replace with next line from Microsemi: PolarFire FPGA, preliminary showed no degradation after 100's krad dose

\rightarrow FEE components should be able to withstand ~155 krad

Status/Outlook

- Latest panel prototype recently constructed in Fermilab and being tested
 - A. Lucá: A Panel Prototype for the Mu2e Straw Tube Tracker at Fermilab
- Entire FEE chain has been tested successfully, meeting functionality and resolution requirements.
 - Next implementation on panel prototype, including motherboards
- Vertical slice test to be performed on fully instrumented plane (6 panels)
 - Ground loops, noise, crosstalk
- Detector installation in 2020, followed by Mu2e commissioning and data

Tracker panel prototype

DPF 2017

14

Backup

Signal and DIO Background

For $R_{\mu e} \approx 10^{-16}$ we expect to see ~4 conversion events without background contamination

Small-scale prototype

FEE chain tested in 8-channel prototype.

ADC output from electron and proton pulses shown below.

Preamp saturation allows identification of proton hits.

DPF 2017

Pulsed Beam and Delayed Signal Window

- Proton pulse period: 1695 ns (FNAL Delivery Ring)
- Delayed signal window: $700 \rightarrow 1600 \text{ ns}$
- Pion lifetime: 26 ns prompt backgrounds decay before signal window
- Muonic Al lifetime: 864 ns reason for selecting Al target

Require beam extinction (fraction of beam between pulses): $\varepsilon < 10^{-10}$

Tracking

From individual straw hits in tracker we need to:

- Remove background hits
- Identify hits from single particle (pattern recognition)
- Reconstruct particle's trajectory (helix fitting)

Signal electron + all hits over 500-1695 ns window

Detailed G4 model: straws, electronics, supports, B-fields

DPF 2017

Tracker Momentum Resolution

Tracker momentum resolution requirement: $\sigma_p/p < 0.2\%$ for a 105 MeV electron, or $\sigma_p < 180$ keV/c

