

Recent results of charmed baryon decays at Belle

Bilas Pal, on behalf of the Belle Collaboration

University of Cincinnati

Outline:

- Observation of DCS decay $\Lambda_c^+ \rightarrow K^+ \pi^- p$
- Search for $\Lambda_c^+ \rightarrow \phi p \pi^0$ decays (hidden-strangeness penta-quark search)
- Branching fraction measurement of $\Lambda_c^+ o K^- \pi^+ p \pi^0$ decays

The Belle experiment runs at KEKB

Belle Detector Aerogel Cherenkov cnt. n=1.015~1.030 Gentral Drift Chamber small cell +He/C₂H₆ *J* lyr. DSSD

 $e^- \rightarrow (*) \leftarrow e^+$

> Charmed hadrons are mainly produced via

- Total integrated luminosity ~ 1000/fb
- > Most of the data was taken at the $\Upsilon(4S)$ energy.

On resonance: $\Upsilon(5S)$: 121 fb^{-1}
$\Upsilon(4S): 711 \ fb^{-1}$
$\Upsilon(3S): 3 f b^{-1}$
$\Upsilon(2S): 25 f b^{-1}$
$\Upsilon(1S): 6 f b^{-1}$
Off resonance/ scan: $\sim 100 fb^{-1}$

DCS $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays

Double Cabibbo-suppressed (DCS) decays seen in charm mesons, but not previously in baryons.

> One trial so far: $\frac{B(\Lambda_c^+ \to pK^+\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^+)} < 4.6 \times 10^{-3}$ at 90% CL by FOCUS [PLB 624, 166 (2005)]

> Naïve expectation: $\frac{B(DCS)}{B(CF)} = tan^4 \theta_c = 0.285\%$

Since W-exchange diagram is absent in DCS decay, $\frac{\mathcal{B}(DCS)}{\mathcal{B}(CF)}$ may be smaller than the naïve expectation.

 \succ This analysis uses the entire Belle Data.

DCS $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays

1st

Observation

 $\frac{\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (2.35 \pm 0.27 \pm 0.21) \times 10^{-3}$ $= (0.82 \pm 0.12) \tan^4 \theta_c$ (consistent within 1.5 σ with the naïve expectation) Absolute branching fraction

 $\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-) = (1.61 \pm 0.23^{+0.07}_{-0.08}) \times 10^{-4}$

PRL 117, 011801 (2016)

After subtracting the contribution $\Lambda^*(1520)$ and Δ isobar intermediates, which only contribute to CF decay, the revised ratio

$$\frac{\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (1.10 \pm 0.17) \tan^4 \theta_c$$

compatible with naïve expectation (within 1.0σ): no large W-exchange contribution in CF decay.

Search for $\Lambda_c^+ \rightarrow \phi p \pi^0$ decays

- ➤ The decay is similar to the decay of LHCb's hidden-charm penta-quark (P_c^+) discovery channel Λ_b → J/ψpK⁻. [PRL 115, 072001 (2015)
- → Hidden-strangeness penta-quark (P_s^+) may appear in the intermediate state of ϕp , assuming the underlying mechanism creating the P_c^+ also holds for P_s^+ , independent of the flavor and mass of P_s^+ is smaller than 2.151 GeV. [PRD 92, 114030 (2015)]

- ► LEPS & CLAS collaborations observed a bump at $\sqrt{s} \approx 2.0$ GeV in ϕ photo-production. [PRL 95, 182001(2005); PRC 89, 055208(2014); PRC 90, 019901 (2014)]
- This analysis uses 915/fb of Belle data collected at and near $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances.

Search for $\Lambda_c^+ \rightarrow \phi p \pi^0$ decays

- > Two dimensional fit is performed to $K^+K^-p\pi^0$ and K^+K^- invariant masses, in order to extract the Λ_c^+ signal yield.
- ➤ Cabibbo-favored Λ⁺_c → φΣ⁺(→ pπ⁰) decay has the same final state and is suppressed by rejecting the events in which pπ⁰ system has an invariant mass within 10 MeV of Σ⁺ mass.
- → Branching fraction is measured with respect to well measured CF decay $\Lambda_c^+ \rightarrow \pi^+ K^- p$

Upper limits on branching fractions

$$\mathcal{B}(\Lambda_{c}^{+} \to \phi p \pi^{0}) < 15.3 \times 10^{-5}, \\ (\Lambda_{c}^{+} \to K^{+} K^{-} p \pi^{0})_{\mathrm{NR}} < 6.3 \times 10^{-5}, \\ \mathsf{New}$$

$$\mathcal{B}(\Lambda_{c}^{+} \to p K^{-} \pi^{+}) \times \mathcal{B}(\Lambda_{c}^{+} \to p K^{-} \pi^{+}) \\ \mathsf{New}$$
arXiv:1707.00089[hep-ex]
Submitted to PRD(RC)
6

Search for hidden-strangeness pentaquark

- > 2D fits (slide # 6) are performed in bins of $m(\phi p)$ for the background-subtracted $m(\phi p)$ distribution.
- > The distribution is then fitted with a RBW for P_s^+ and a phase space contribution obtained from MC simulation.
- > The data shows (**no**) clear evidence of a P_s^+ state

This limit is a factor of 6 higher than the product branching measured by LHCb for an analogous hidden-charm pentaquark states $P_c^+(4450)$ [(1.3 ± 0.4)×10⁻⁵]

state topology and is used to adjust the MC-data differences in $\phi p \pi^0$ and $K^+ K^- p \pi^0$ decays.

$$\frac{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p \pi^0)}{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p)} = (0.685 \pm 0.007 \pm 0.018).$$

This is the most precise measurement to date.

Summary

- ➤ We have presented
 - \succ The first observation of DCS baryonic decay $\Lambda_c^+ \to K^+ \pi^- p$
 - > The search for the decays $\Lambda_c^+ \rightarrow \phi p \pi^0$ and NR $\Lambda_c^+ \rightarrow K^+ K^- p \pi^0$, no significant signal is observed for either decay mode and we set 90% CL upper limit on their branching fractions. These are the first such limit.
 - > The search for hidden-strangeness pentaquark decay $P_s^+ \rightarrow \phi p$, our data shows no clear evidence of this decay and we set an upper limit on product branching fraction. This is also first such search.

> The most precise measurement of $B(\Lambda_c^+ \rightarrow K^- \pi^+ p \pi^0)$.