Probabilities in Matter Revisited
H. Minakata + SP arXiv:I505.01826
P. Denton + H. Minakata + SP arXiv:I604.08I67

Stephen Parke

 Theoretical Physics Dept Fermilab

The 2 ${ }^{\text {nd }}$ Hyper-K Detector in Korea

In Vacuum:

$$
\begin{aligned}
P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right) & =\left|\sum_{i=1}^{3} U_{\alpha i} U_{\beta i}^{*} e^{-i \frac{m_{i}^{2} L}{2 E}}\right|^{2} \Delta m_{i j}^{2} \equiv \boldsymbol{m}_{\boldsymbol{i}}^{2}-\boldsymbol{m}_{\boldsymbol{j}}^{2} \\
& =\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j}\right] \sin ^{2} \frac{\Delta m_{i j}^{2} L}{4 E} \\
& +8 \operatorname{Im}\left[U_{\alpha 1} U_{\beta 1}^{*} U_{\alpha 2}^{*} U_{\beta 2}\right] \sin \frac{\Delta m_{32}^{2} L}{4 E} \sin \frac{\Delta m_{21}^{2} L}{4 E} \sin \frac{\Delta m_{13}^{2} L}{4 E}
\end{aligned}
$$

3 flavor
$4 \sin \frac{\Delta m_{32}^{2} L}{4 E} \sin \frac{\Delta m_{21}^{2} L}{4 E} \sin \frac{\Delta m_{13}^{2} L}{4 E}=\sin \frac{\Delta m_{32}^{2} L}{2 E}+\sin \frac{\Delta m_{21}^{2} L}{2 E}+\sin \frac{\Delta m_{13}^{2} L}{2 E}$

$$
\mathrm{CPV}: \sim(L / E)^{3} \text { not } \sim(L / E)^{1}
$$

Wronskian is non-vanishing as function of L / E

In Matter:

$$
\begin{gathered}
i \frac{d}{d x} \nu=H \nu \quad \nu \equiv\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) \\
H=\frac{1}{2 E}\left\{U\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta m_{21}^{2} & 0 \\
0 & 0 & \Delta m_{31}^{2}
\end{array}\right] U^{\dagger}+\left[\begin{array}{ccc}
a(x) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right\} \\
a=2 \sqrt{2} G_{F} N_{e} E \approx 1.52 \times 10^{-4}\left(\frac{Y_{e} \rho}{\mathrm{~g} \cdot \mathrm{~cm}^{-3}}\right)\left(\frac{E}{\mathrm{GeV}}\right) \mathrm{eV}^{2} .
\end{gathered}
$$

In Matter:

$$
\begin{array}{r}
i \frac{d}{d x} \nu=H \nu \quad \nu \equiv\left(\begin{array}{c}
\nu_{e} \\
\boldsymbol{\nu}_{\mu} \\
\boldsymbol{\nu}_{\boldsymbol{\tau}}
\end{array}\right) \\
H=\frac{1}{2 E}\left\{U\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta m_{21}^{2} & 0 \\
0 & 0 & \Delta m_{31}^{2}
\end{array}\right] U^{\dagger}+\left[\begin{array}{ccc}
a(x) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right\} \\
a=2 \sqrt{2} G_{F} N_{e} E \approx 1.52 \times 10^{-4}\left(\frac{Y_{e} \rho}{\mathrm{~g}^{\prime} \cdot \mathrm{cm}^{-3}}\right)\left(\frac{E}{\mathrm{GeV}}\right) \mathrm{eV}^{2} . \\
\text { if } \rho Y_{e}=1.5 \mathrm{~g} / \mathrm{cm}^{3} \text { and } E=10 \mathrm{GeV} \text { then } a \approx \Delta m_{31}^{2} \\
E=300 \mathrm{MeV} \text { then } a \approx \Delta m_{21}^{2}
\end{array}
$$

Methods for Solution:

Methods for Solution:

- Numerical Methods:

Yes, FINE for experimental analysis of data but limited physical understand!
e.g. Magic Baseline

Methods for Solution:

- Numerical Methods:

Yes, FINE for experimental analysis of data but limited physical understand!
e.g. Magic Baseline

- Analytic Methods:

$$
P\left(\nu_{\beta} \rightarrow \nu_{\alpha} ; L\right)=\left|S_{\alpha \beta}\right|^{2} . \quad S=T \exp \left[-i \int_{0}^{L} d x H(x)\right]
$$

Methods for Solution:

- Numerical Methods:

Yes, FINE for experimental analysis of data but limited physical understand!
e.g. Magic Baseline

- Analytic Methods:

$$
P\left(\nu_{\beta} \rightarrow \nu_{\alpha} ; L\right)=\left|S_{\alpha \beta}\right|^{2} . \quad S=T \exp \left[-i \int_{0}^{L} d x H(x)\right]
$$

too complicated for arbitrary $a(x)$!

Methods for Solution:

- Numerical Methods:

Yes, FINE for experimental analysis of data but limited physical understand!
e.g. Magic Baseline

- Analytic Methods:

$$
P\left(\nu_{\beta} \rightarrow \nu_{\alpha} ; L\right)=\left|S_{\alpha \beta}\right|^{2} . \quad S=T \exp \left[-i \int_{0}^{L} d x H(x)\right]
$$

too complicated for arbitrary $a(x)$!

- make simplification that a is constant !
(good approximation for many experiments).

Exact Analytic Solution:

- Solve Cubic Characteristic Eqn.

$$
\begin{array}{r}
\lambda^{3}-\left(a+\Delta m_{21}^{2}+\Delta m_{31}^{2}\right) \lambda^{2} \\
+\left[\Delta m_{21}^{2} \Delta m_{31}^{2}+a\left\{\left(c_{12}^{2}+s_{12}^{2} s_{13}^{2}\right) \Delta m_{21}^{2}+c_{13}^{2} \Delta m_{31}^{2}\right\}\right] \lambda \\
-c_{12}^{2} c_{13}^{2} a \Delta m_{21}^{2} \Delta m_{31}^{2} \quad=0
\end{array}
$$

Exact Analytic Solution:

- Solve Cubic Characteristic Eqn.

$$
\begin{array}{r}
\lambda^{3}-\left(a+\Delta m_{21}^{2}+\Delta m_{31}^{2}\right) \lambda^{2} \\
+\left[\Delta m_{21}^{2} \Delta m_{31}^{2}+a\left\{\left(c_{12}^{2}+s_{12}^{2} s_{13}^{2}\right) \Delta m_{21}^{2}+c_{13}^{2} \Delta m_{31}^{2}\right\}\right] \lambda \\
-c_{12}^{2} c_{13}^{2} a \Delta m_{21}^{2} \Delta m_{31}^{2} \quad=0
\end{array}
$$

See Zaglauer \& Schwarzer, Z. Phys. C 1988

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{3} s-\frac{1}{3} \sqrt{s^{2}-3 t}\left[u+\sqrt{3\left(1-u^{2}\right)}\right], \\
& \lambda_{2}=\frac{1}{3} s-\frac{1}{3} \sqrt{s^{2}-3 t}\left[u-\sqrt{3\left(1-u^{2}\right)}\right], \\
& \lambda_{3}=\frac{1}{3} s+\frac{2}{3} u \sqrt{s^{2}-3 t}, \\
& s=\Delta_{21}+\Delta_{31}+a, \\
& t=\Delta_{21} \Delta_{31}+a\left[\Delta_{21}\left(1-s_{12}^{2} c_{13}^{2}\right)+\Delta_{31}\left(1-s_{13}^{2}\right)\right], \\
& u=\cos \left[\frac{1}{3} \cos ^{-1}\left(\frac{2 s^{3}-9 s t+27 a \Delta_{21} \Delta_{31} c_{12}^{2} c_{13}^{2}}{2\left(s^{2}-3 t\right)^{3 / 2}}\right)\right],
\end{aligned}
$$

here $\Delta_{i j} \equiv \Delta m_{i j}^{2}$

Exact Analytic Solution:

- Solve Cubic Characteristic Eqn.

$$
\begin{array}{r}
\lambda^{3}-\left(a+\Delta m_{21}^{2}+\Delta m_{31}^{2}\right) \lambda^{2} \\
+\left[\Delta m_{21}^{2} \Delta m_{31}^{2}+a\left\{\left(c_{12}^{2}+s_{12}^{2} s_{13}^{2}\right) \Delta m_{21}^{2}+c_{13}^{2} \Delta m_{31}^{2}\right\}\right] \lambda \\
-c_{12}^{2} c_{13}^{2} a \Delta m_{21}^{2} \Delta m_{31}^{2} \quad=0
\end{array}
$$

See Zaglauer \& Schwarzer, Z. Phys. C 1988

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{3} s-\frac{1}{3} \sqrt{s^{2}-3 t}\left[u+\sqrt{3\left(1-u^{2}\right)}\right], \\
& \lambda_{2}=\frac{1}{3} s-\frac{1}{3} \sqrt{s^{2}-3 t}\left[u-\sqrt{3\left(1-u^{2}\right)}\right], \\
& \lambda_{3}=\frac{1}{3} s+\frac{2}{3} u \sqrt{s^{2}-3 t} \\
& s=\Delta_{21}+\Delta_{31}+a, \\
& t=\Delta_{21} \Delta_{31}+a\left[\Delta_{21}\left(1-s_{12}^{2} c_{13}^{2}\right)+\Delta_{31}\left(1-s_{13}^{2}\right)\right], \\
& u=\cos \left[\frac{1}{3} \cos ^{-1}\left(\frac{2 s^{3}-9 s t+27 a \Delta_{21} \Delta_{31} c_{12}^{2} c_{13}^{2}}{2\left(s^{2}-3 t\right)^{3 / 2}}\right)\right], \\
& \text { - then calculate mixing } \\
& \text { angles in matter } \\
& \text { or mixing matrix, } \mathrm{V} \text { : } \\
& \text { eg Kimura Takamura } \\
& \text { \& Yokomakura PLB, PRD } 2002
\end{aligned}
$$

here $\Delta_{i j} \equiv \Delta m_{i j}^{2}$

then Oscillation Probablities

with λ_{i} 's and $V_{\alpha i}$ in matter then

$$
\begin{aligned}
& P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right)=\left|\sum_{i=1}^{3} V_{\alpha i} V_{\beta i}^{*} e^{-i \frac{\lambda_{i} L}{2 E}}\right|^{2} \\
&=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
&+8 \operatorname{lm}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

then Oscillation Probablities

with λ_{i} 's and $V_{\alpha i}$ in matter then

$$
\begin{aligned}
& P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right)=\left|\sum_{i=1}^{3} V_{\alpha i} V_{\beta i}^{*} e^{-i \frac{\lambda_{i} L}{2 E}}\right|^{2} \\
&=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
&+8 \operatorname{lm}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

same as VACUUM with $m_{i}^{2} \rightarrow \lambda_{i}$ and $U_{\alpha i} \rightarrow V_{\alpha i}!!!$

then Oscillation Probablities

with λ_{i} 's and $V_{\alpha i}$ in matter then

$$
\begin{aligned}
& P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right)=\left|\sum_{i=1}^{3} V_{\alpha i} V_{\beta i}^{*} e^{-i \frac{\lambda_{i} L}{2 E}}\right|^{2} \\
&=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
&+8 \operatorname{lm}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

same as VACUUM with $m_{i}^{2} \rightarrow \lambda_{i}$ and $U_{\alpha i} \rightarrow V_{\alpha i}$!!!
Wronskian is nonvanishing,

then Oscillation Probablities

with λ_{i} 's and $V_{\alpha i}$ in matter then

$$
\begin{aligned}
& P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right)=\left|\sum_{i=1}^{3} V_{\alpha i} V_{\beta i}^{*} e^{-i \frac{\lambda_{i} L}{2 E}}\right|^{2} \\
&=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
&+8 \operatorname{lm}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

same as VACUUM with $m_{i}^{2} \rightarrow \lambda_{i}$ and $U_{\alpha i} \rightarrow V_{\alpha i}$!!!
Wronskian is nonvanishing,

Are we done?

Exact Analytic Solution Issue:

- Solve Cubic Characteristic Eqn.

$$
\begin{array}{r}
\lambda^{3}-\left(a+\Delta m_{21}^{2}+\Delta m_{31}^{2}\right) \lambda^{2} \\
+\left[\Delta m_{21}^{2} \Delta m_{31}^{2}+a\left\{\left(c_{12}^{2}+s_{12}^{2} s_{13}^{2}\right) \Delta m_{21}^{2}+c_{13}^{2} \Delta m_{31}^{2}\right\}\right] \lambda \\
-c_{12}^{2} c_{13}^{2} a \Delta m_{21}^{2} \Delta m_{31}^{2} \quad=0
\end{array}
$$

Exact Analytic Solution Issue:

Exact Analytic Solution Issue:

- Solve Cubic Characteristic Eqn.

$$
\begin{array}{r}
\lambda^{3}-\left(a+\Delta m_{21}^{2}+\Delta m_{31}^{2}\right) \lambda^{2} \\
+\left[\Delta m_{21}^{2} \Delta m_{31}^{2}+a\left\{\left(c_{12}^{2}+s_{12}^{2} s_{13}^{2}\right) \Delta m_{21}^{2}+c_{13}^{2} \Delta m_{31}^{2}\right\}\right] \lambda \\
-c_{12}^{2} c_{13}^{2} a \Delta m_{21}^{2} \Delta m_{31}^{2} \quad=0
\end{array}
$$

IF

- $a=0$
- or $\Delta m_{21}^{2}=0$

$$
\begin{array}{r}
\begin{array}{l}
\text { See Zaglauer \& Schwarzer, Z. Phys. C } 1988 \\
\lambda_{1}=\frac{1}{3} s-\frac{1}{3} \sqrt{s^{2}-3 t}\left[u+\sqrt{3\left(1-u^{2}\right)}\right], \\
\lambda_{2}=\frac{1}{3} s-\frac{1}{3} \sqrt{s^{2}-3 t}\left[u-\sqrt{3\left(1-u^{2}\right)}\right], \\
\lambda_{3}=\frac{1}{3} s+\frac{2}{3} u \sqrt{s^{2}-3 t}, \\
s=\Delta_{21}+\Delta_{31}+a, \\
t=\Delta_{21} \Delta_{31}+a\left[\Delta_{21}\left(1-s_{12}^{2} c_{13}^{2}\right)+\Delta_{31}\left(1-s_{13}^{2}\right)\right], \\
u=\cos \left[\frac{1}{3} \cos ^{-1}\left(\frac{2 s^{3}-9 s t+27 a \Delta_{21} \Delta_{31} c_{12}^{2} c_{13}^{2}}{2\left(s^{2}-3 t\right)^{32}}\right)\right],
\end{array}
\end{array}
$$

- or $\sin \theta_{12}=0$
- or $\sin \theta_{13}=0$

THEN characteristic Eqn
FACTORIZES!

Exact Analytic Solution Issue:

- Solve Cubic Characteristic Eqn.

$$
\begin{array}{r}
\lambda^{3}-\left(a+\Delta m_{21}^{2}+\Delta m_{31}^{2}\right) \lambda^{2} \\
+\left[\Delta m_{21}^{2} \Delta m_{31}^{2}+a\left\{\left(c_{12}^{2}+s_{12}^{2} s_{13}^{2}\right) \Delta m_{21}^{2}+c_{13}^{2} \Delta m_{31}^{2}\right\}\right] \lambda \\
-c_{12}^{2} c_{13}^{2} a \Delta m_{21}^{2} \Delta m_{31}^{2} \quad=0
\end{array}
$$

IF
See Zaglauer \& Schwarzer, Z. Phys. C 1988

- $a=0$
- or $\Delta m_{21}^{2}=0$
- or $\sin \theta_{12}=0$
- or $\sin \theta_{13}=0$

BUT

$$
\lambda_{1}=\frac{1}{3} s-\frac{1}{3} \sqrt{s^{2}-3 t}\left[u+\sqrt{3\left(1-u^{2}\right)}\right]
$$

THEN characteristic Eqn
FACTORIZES!

2 flavor mixing in matter
$a x^{2}+b x+c=0$
simple, intuitive, useful

2 flavor mixing in matter

$$
a x^{2}+b x+c=0
$$

simple, intuitive, useful
3 flavor mixing in matter

$$
a x^{3}+b x^{2}+c x+d=0
$$

complicated, counter intuitive, ...

need more of a physicists approach: Perturbation Theory

- $\sin \theta_{13} \sim 0.15$
- $\Delta m_{21}^{2} / \Delta m_{31}^{2} \sim 0.03$
for Long Baseline Experiments using $\Delta m_{21}^{2} / \Delta m_{31}^{2}$ is more appropriate.

need more of a physicists approach: Perturbation Theory

- $\sin \theta_{13} \sim 0.15$
- $\Delta m_{21}^{2} / \Delta m_{31}^{2} \sim 0.03$
for Long Baseline Experiments using $\Delta m_{21}^{2} / \Delta m_{31}^{2}$ is more appropriate.
- Treat $\boldsymbol{\theta}_{13}$ exactly first, then do perturbation theory in
$\epsilon \equiv \Delta m_{21}^{2} / \Delta m_{e e}^{2} \approx 0.03$ where $\Delta m_{e e}^{2} \equiv \Delta m_{31}^{2}-s_{12}^{2} \Delta m_{21}^{2}$

New Perturbation Theory for Osc. Probabilities

$$
H=\frac{1}{2 E}\left\{U\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta m_{21}^{2} & 0 \\
0 & 0 & \Delta m_{31}^{2}
\end{array}\right] U^{\dagger}+\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right\}
$$

Rewrite as $\boldsymbol{H}=\boldsymbol{H}_{\mathbf{0}}+\boldsymbol{H}_{1}$
where H_{0} is diagonal

$$
\text { and } H_{1} \text { is off-diagonal. }
$$

$\theta_{13}, \theta_{12}, \theta_{23}, \delta$

$$
\begin{aligned}
& \lambda_{a}=a+\left(s_{13}^{2}+\epsilon s_{12}^{2}\right) \Delta m_{e e}^{2}, \\
& \lambda_{b}=\epsilon c_{12}^{2} \Delta m_{e e}^{2} \\
& \lambda_{c}=\left(c_{13}^{2}+\epsilon s_{12}^{2}\right) \Delta m_{e e}^{2}
\end{aligned}
$$

I-3 Rotation

$\phi, \theta_{12}, \theta_{23}, \delta$
 $$
s_{\phi} c_{\phi}=\frac{s_{13} c_{13} \Delta m_{e e}^{2}}{\lambda_{+}-\lambda_{-}},
$$

$$
\begin{aligned}
& \lambda_{\mp}=\frac{1}{2}\left[\left(\lambda_{a}+\lambda_{c}\right) \mp \operatorname{sign}\left(\Delta m_{e e}^{2}\right) \sqrt{\left(\lambda_{c}-\lambda_{a}\right)^{2}+4\left(s_{13} c_{13} \Delta m_{e e}^{2}\right)^{2}}\right], \\
& \lambda_{0}=\lambda_{b}=\epsilon c_{12}^{2} \Delta m_{e e}^{2},
\end{aligned}
$$

$$
H_{0}=\frac{1}{2 E} \operatorname{diag}\left(\lambda_{-}, \lambda_{0}, \lambda_{+}\right)
$$

$$
H_{1}=\epsilon s_{12} c_{12} \frac{\Delta m_{e e}^{2}}{2 E}\left[\begin{array}{lll}
& c_{\left(\phi-\theta_{13}\right)} & \\
c_{\left(\phi-\theta_{13}\right)} & & s_{\left(\phi-\theta_{13}\right)}
\end{array}\right]
$$

H. Minakata + SP arXiv:I505.01826

$\phi, \psi, \theta_{23}, \delta$

$$
s_{\psi} c_{\psi}=\frac{\epsilon c_{\left(\phi-\theta_{13}\right)} s_{12} c_{12} \Delta m_{e e}^{2}}{\Delta \lambda_{21}}
$$

$\lambda_{1,2}=\frac{1}{2}\left[\left(\lambda_{0}+\lambda_{-}\right) \mp \sqrt{\left(\lambda_{0}-\lambda_{-}\right)^{2}+4\left(\epsilon c_{\left(\phi-\theta_{13}\right)} c_{12} s_{12} \Delta m_{e e}^{2}\right)^{2}}\right]$,
$\lambda_{3}=\lambda_{+}$.
$H_{0}=\frac{1}{2 E} \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

ϕ is θ_{13} in matter
P. Denton + H. Minakata + SP arXiv:I604.08I67

Mixing Angles and Masses in Matter:

then Oscillation Probablities

with λ_{i} 's and $V_{\alpha i}$ in matter then

$$
\begin{aligned}
& P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right)=\left|\sum_{i=1}^{3} V_{\alpha i} V_{\beta i}^{*} e^{-i \frac{\lambda_{i} L}{2 E}}\right|^{2} \\
&=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
&+8 \operatorname{lm}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

then Oscillation Probablities

with λ_{i} 's and $V_{\alpha i}$ in matter then

$$
\begin{aligned}
& P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right)=\left|\sum_{i=1}^{3} V_{\alpha i} V_{\beta i}^{*} e^{-i \frac{\lambda_{i} L}{2 E}}\right|^{2} \\
&=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
&+8 \operatorname{lm}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

same as VACUUM with $m_{i}^{2} \rightarrow \lambda_{i}$ and $U_{\alpha i} \rightarrow V_{\alpha i}!!!$

then Oscillation Probablities

with λ_{i} 's and $V_{\alpha i}$ in matter then

$$
\begin{aligned}
& P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right)=\left|\sum_{i=1}^{3} V_{\alpha i} V_{\beta i}^{*} e^{-i \frac{\lambda_{i} L}{2 E}}\right|^{2} \\
&=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
&+8 \operatorname{lm}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

same as VACUUM with $m_{i}^{2} \rightarrow \lambda_{i}$ and $U_{\alpha i} \rightarrow V_{\alpha i}$!!!
Wronskian is nonvanishing,

ν_{e} Survival Probability:

ν_{e} Survival Probability:

$$
P\left(\nu_{e} \rightarrow \nu_{e}\right)=1-\sin ^{2} 2 \phi \sin ^{2} \frac{\left(\lambda_{+}-\lambda_{-}\right) L}{4 E}
$$

exact - approx - vaccum

ν_{e} Survival Probability:

$$
P\left(\nu_{e} \rightarrow \nu_{e}\right)=1-\sin ^{2} 2 \phi \sin ^{2} \frac{\left(\lambda_{+}-\lambda_{-}\right) L}{4 E}
$$

ν_{e} Survival Probability:

$$
P\left(\nu_{e} \rightarrow \nu_{e}\right)=1-\sin ^{2} 2 \phi \sin ^{2} \frac{\left(\lambda_{+}-\lambda_{-}\right) L}{4 E}
$$

Conclusions:

Conclusions:

Conclusions:

- Harmony between

Perturbation Theory \& General Expression

$$
\begin{aligned}
P\left(\nu_{\beta} \rightarrow\right. & \left.\nu_{\alpha}\right)=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
& +8 \operatorname{Im}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

- New Perturbation Theory reveals

Conclusions:

- Harmony between

Perturbation Theory \& General Expression

$$
\begin{aligned}
P\left(\nu_{\beta} \rightarrow\right. & \left.\nu_{\alpha}\right)=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
& +8 \operatorname{Im}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

- New Perturbation Theory reveals

Structure, Simplicity and Universal Form of Oscillation Probabilities in Matter

Conclusions:

- Harmony between

Perturbation Theory \& General Expression

$$
\begin{aligned}
P\left(\nu_{\beta} \rightarrow\right. & \left.\nu_{\alpha}\right)=\delta_{\alpha \beta}-4 \sum_{j>i}^{3} \operatorname{Re}\left[V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right] \sin ^{2} \frac{\left(\lambda_{j}-\lambda_{i}\right) L}{4 E} \\
& +8 \operatorname{Im}\left[V_{\alpha 1} V_{\beta 1}^{*} V_{\alpha 2}^{*} V_{\beta 2}\right] \sin \frac{\left(\lambda_{3}-\lambda_{2}\right) L}{4 E} \sin \frac{\left(\lambda_{2}-\lambda_{1}\right) L}{4 E} \sin \frac{\left(\lambda_{1}-\lambda_{3}\right) L}{4 E}
\end{aligned}
$$

- New Perturbation Theory reveals

Structure, Simplicity and Universal Form of Oscillation Probabilities in Matter

- Provides Advanced Understanding of

Neutrino Amplitudes in Matter

