

Nucleon Decay Searches in Super-Kamiokande: Results and Prospects

Gabriel Santucci 2017 August 03 gabriel.santucci@stonybrook.edu

DPF Meeting

Does the Proton Decay?

- * Proton stability is not guaranteed by any fundamental symmetry.
- * Standard Model interactions share the same structure: gauge theories with unitary symmetry.
- * Grand Unified Theories (GUTs) unifies the SM interactions at very high energies (GUT scale) beyond the reach of accelerators.
- * Most GUTs predict nucleon decay with a very long lifetime (> 10³⁰ years).
- * Thus, nucleon decay serves as a direct probe of GUTs. But very massive detectors are necessary for these searches.

Benchmark Modes

$$\mathbf{p} \rightarrow \mathbf{e}^+ \pi^0$$

non-SUSY favored

$$p \rightarrow \overline{\nu} K^+$$

SUSY favored

Proton Decay Modes

- * GUTs predict many nucleon decay (NDK) modes.
- * Different experiments have searched for NDK in the 80's. But no evidence was found during these searches.
- * Super-Kamiokande is the largest detector built to look for NDK and it has been taking data since 1996.

The Super-Kamiokande Detector

- * Multipurpose 50 kton water Cherenkov detector (22.5 kton fiducial).
- * Optically separated into:
 - Inner Detector: 11,146 20" PMTs
 - Outer Detector: 1,885 8" PMTs
- * Excellent particle identification between showering (e-like) and non-showering (μ -like) rings.

Four Run Periods:

SK-I (96-01) SK-II (03-05)

SK-III (05-08) SK-IV (08-present)
New front-end electronics

SK 20" PMT

The modes: $p \rightarrow e^{\dagger} \pi^{0}$ and $p \rightarrow \mu^{\dagger} \pi^{0}$

PRD 95, 12004 (2017)

Event Characteristics

- The l^+ and π^0 are back-to-back (459 MeV/c).
- π^0 $\gamma\gamma$: all final state particles are detectable.
- Able to reconstruct proton mass and momentum.
- Atmospheric neutrino interactions can mimic this type of signal.

Analysis Improvements

PRD 95, 12004 (2017)

Two Box Analysis

- Region 1: P < 100 MeV/c.
 - Dominated by free protons.
 - No nuclear effects → Less Systematics.
- Region 2: 100 < P < 250 MeV/c.
 - Dominated by bound protons.

Neutron Capture (SK-IV only)

- Atm- ν interactions can produce neutrons in the final state.
- Neutron is captured by Hydrogen and a photon is emitted.
- Half of the remaining atm background can be removed using neutron tagging.

(2012) 220 kton · yrs data from SK I-II → (2017) 306 kton · yrs data from SK I-IV.

Results

PRD 95, 12004 (2017)

e + π ⁰	Signal Efficiency	Expected Background	Observed Events
Low	18.7%	0.07	0
High	19.9%	0.54	0
Total	38.6%	0.61	0

μ + π 0	Signal Efficiency	Expected Background	Observed Events
Low	18.0%	0.05	0
High	16.7%	0.82	2
Total	34.7%	0.87	2

Lifetime Limit at 90% CL with 306 kton - yrs exposure		
p→e+π ⁰	1.6 · 10 ³⁴ years	
$p \rightarrow \mu^+ \pi^0$	7.7 · 10 ³³ years	

Other N → l⁺ + meson Searches

PRD 96, 012003 (2017)

p
$$\rightarrow$$
 (e+, μ +) + (η , ρ 0, ω)
n \rightarrow (e+, μ +) + (π -, ρ -)

- Systematic search for several modes of anti-lepton + meson.
- Exposure has increased to 316 kton year, 2.26 times more data since last result (2012).
- Similarly to $l^+\pi^0$, the analysis benefit from neutron tagging in SK-IV.
- 2-Box separation is introduced for p $\rightarrow l^+ \eta$, with $\eta \rightarrow \gamma \gamma$ only.

$N \rightarrow l^{+} + meson Results$

PRD 96, 012003 (2017)

 Most channels have increased by a factor of 2 or 3 since the previous publication (SK-I and II).

 Some events have been observed, but in all cases the observation was consistent with expected background.

$\mathbf{p} \rightarrow \overline{\nu} \, \mathbf{K}^{+}$: Prompt- γ and Monochromatic Excess Searches PRD 90, 072005 (2014)

Event Characteristics

- Neutrino and Kaon are invisible.
- Dominant Kaon decay mode: mono-chromatic μ with ~236 MeV/c.
- Nuclear de-excitation: ~6 MeV γ .
- Coincidence measurement of low-E γ and a monoenergetic μ .
- If γ not found: look for excess of monochromatic μ in the spectra (statistically independent search).

p → v K + Hadronic Decay

PRD 90, 072005 (2014)

Kaon Hadronic Decay

- Kaon decays to $\pi^+\pi^0$.
- Mono-chromatic π^0 (205 MeV/c) and faint π^+ .
- E_{bk} : energy in the <u>backward</u> region defined by the π^0 direction.
- E_{res} : residual hits close to the π^+ direction.

Event Selection

- 1 or 2 rings consistent with 205 MeV/c π^0 .
- E_{bk} consistent with faint π +.
- Low residual activity in the detector (E_{res}).

$p \rightarrow \overline{\nu} K^{+} Results$

PRD 90, 072005 (2014)

	Signal Efficiency	Expected Background	Observed Events
prompt-γ	9.4%	0.11	0
$\pi^+\pi^0$	9.6%	0.13	0

	Lifetime Limit at 90% CL with 349 kton · yrs exposure	
Update	8.0 · 10 ³³ years	

2017 Updates

- 260 → 349 kton yrs exposure.
- Neutron tagging in SK-IV.
- No candidate events were observed in either search methods.

Reconstruction with fiTQun

 FiTQun is a new maximum likelihood event reconstruction algorithm in SK. Based on MiniBooNE

(NIM A608, 206 - 2009)

Official T2K result (PRL 112, 061802 - 2014)

- A single track can be specified by a particle type (PID) plus 7 kinematic variables (X):
 - Position (x, y, z, t)
 - Momentum (p)
 - Direction (θ, φ)
- For a given set X, charge and time PDF's are produced for each PMT in SK.
- A likelihood is calculated for the event hypothesis.
- Event hypothesis are chosen by comparing best-fit likelihoods.

$\mathbf{p} \rightarrow \overline{\nu}$ K⁺: Prompt- γ Search with fiTQun

- Event hypothesis: simultaneously fit for μ -like ring + 6 MeV γ .
- FiTQun can reconstruct the γ energy and time.
- Lower Δt reconstruction is achieved by comparing with CCQE hypothesis.

E_γ Resolution (3 - 9 MeV)

Preliminary

Mean: 2.3%

Std: 28%

(Rec - True) / True

Preliminary Results

- Similar performance for high Δt values.
- Significant improvement for low Δt.
- Efficiency gain: 9.4% → 13.9%.
- Similar expected background.

Summary and Prospects

- Super-Kamiokande can search for many different NDK modes.
- Most modes have been updated to more than 300 kton · yrs exposure.
- Observed candidates are consistent with expected background.
- New search methods are being developed.
- Preliminary results indicate significant improvements on efficiency (~50%).

Thank You

- 1 Kamioka Observatory, ICRR, Univ. of Tokyo, Japan
- 2 RCCN, ICRResearch, Univ. of Tokyo, Japan
- 3 University Autonoma Madrid, Spain
- 4 University of British Columbia, Canada
- 5 Boston University, USA
- 6 Brookhaven National Laboratory, USA
- 7 University of California, Irvine, USA
- 8 California State University, USA
- 9 Chonnam National University, Korea
- 10 Duke University, USA
- 11 Fukuoka Institute of Technology, Japan
- 12 Gifu University, Japan
- 13 GIST College, Korea
- 14 University of Hawaii, USA

- 15 KEK, Japan
- 16 Kobe University, Japan
- 17 Kyoto University, Japan
- 18 Miyagi University of Education, Japan
- 19 STE, Nagoya University, Japan
- 20 SUNY, Stony Brook, USA
- 21 Okayama University, Japan
- 22 Osaka University, Japan
- 23 University of Regina, Canada
- 24 Seoul National University, Korea
- 25 Shizuoka University of Welfare, Japan
- 26 Sungkyunkwan University, Korea
- 27 Tokai University, Japan
- 28 University of Tokyo, Japan

- 29 Kavli IPMU (WPI), University of Tokyo, Japan
- 30 Dep. of Phys., University of Toronto, Canada
- 31 TRIUMF, Canada
- 32 Tsinghua University, China
- 33 University of Washington, USA
- 34 National Centre For Nuclear Research, Poland

~120 collaborators
34 institutions
7 countries

Back-Up

Proton Decay Modes and Predictions

e-mu Separation

Sharp edge

Fuzzy edge

The modes: $p \rightarrow e^{\dagger} \pi^{0}$ and $p \rightarrow \mu^{\dagger} \pi^{0}$

PRD 95, 12004 (2017)

Event Characteristics

- The l^+ and π^0 are back-to-back (459 MeV/c).
- π^0 $\gamma\gamma$: all final state particles are detectable.
- Able to reconstruct proton mass and momentum.
- Atmospheric neutrino interactions can mimic this type of signal.

Event Selection

- All rings are fully contained inside the tank and inside the fiducial volume (2 m away from inner wall) - FCFV.
- 2 or 3-ring event.
- e⁺ π^0 : all rings are e-like and without a decay-e.
- μ + π ⁰: 1 μ -like ring + 1 or 2 e-like rings with 1 decay-e.
- 85 < M_{π^0} < 185 MeV/c² (only for 3-ring case).
- $800 < M_{Tot} < 1050 \text{ MeV/c}^2 \text{ and } P_{Tot} < 250 \text{ MeV/c}$.

Neutron Capture

- Most of the atm-ν interactions produce neutrons in the final state.
- A neutron can be capture by a Hydrogen atom (~200 µs) and emit a
 2.2 MeV photon: n + p → d + γ.
- SK-IV new electronics allow to search for hits coming from this photon using a neural network.

Half of the remaining background can be removed using neutron

tagging.

Efficiency	20.5%
MisTag Rate	1.8%

Two Box Analysis

- Signal Box defined by 800 < M_{Tot} < 1050 MeV/c and P_{Tot} < 250 MeV/c is divided into 2 regions to improve sensitivity:
 - 1. Lower box: P_{tot} < 100 MeV/c
 - —The region is dominated by free proton (H) decays and almost background free.
 - Less systematics due to no nuclear effects.
 - 2. Higher box: $100 < P_{tot} < 250 \text{ MeV/c}$
 - Dominated by bound protons (0) and background events are more likely.
 - Systematic uncertainty is higher due to nuclear effects.

N → I++ meson

Number of Rings

- lepton*: 1 e-like ring with no decay-e for I = e and 1 μ -like ring with 1 decay-e for $I = \mu$.
- $\eta \rightarrow \gamma \gamma$: 2 e-like rings.
- $\eta \rightarrow 3\pi^0$: 3 or 4 e-like rings.
- $\rho \rightarrow \pi^+\pi^-$: 2 μ -like rings.
- $\omega \rightarrow \pi^0 \gamma$: 2 or 3 e-like rings.
- $\omega \rightarrow \pi^+\pi^-\pi^0$: 1 μ -like rings and 2 e-like ring.
- π -: 1 μ -like ring.
- ρ - \rightarrow π - π^0 1 μ -like rings and 2 e-like ring.

 *except for $p \rightarrow \mu^+ \omega$

and $n \rightarrow \mu^+ \rho^-$.

Reconstructed Meson Mass

- η: (480, 620) MeV/c².
- ρ: (600, 900) MeV/c².
- ω: (650, 900) MeV/c².

Reconstructed Nucleon Mass

- Total Mass: (800, 1050) MeV/c².
- (600,800) MeV/ c^2 for $e^+\omega$.
- (450,700) MeV/c² for $\mu^+\omega$.

Reconstructed Nucleon Momentum

- Total momentum < 250 MeV/c.
- < 150 for $\eta \rightarrow 3\pi^0$.
- < 200 for $\omega \rightarrow \pi^+\pi^-\pi^0$.

$p \rightarrow \overline{\nu}$ K⁺: Prompt- γ Search

PRD 90, 072005 (2014)

Event Selection

- 1-ring μ -like with a decay-e.
- 215 $< P_{\mu} <$ 260 MeV/c.
- Search for hit cluster with a sliding window of 12 ns:
 - * $8 < N_{\gamma} < 60$ hits (SK-I, III, IV)
 - \star 4 < N₇ < 30 hits (SK-II)
- Time Difference < 75 ns.
- No neutrons in SK-IV.

Event Characteristics

- Neutrino and Kaon are invisible.
- Dominant Kaon decay mode: μ is monochromatic ~236 MeV/c.
- Nuclear De-excitation: ~6 MeV gamma.
- Coincidence measurement of low-E γ and a mono-energetic μ .

$p \rightarrow \bar{\nu}$ K+: Prompt- γ Search with fiTQun

Reconstructed γ **Energy**

Muons with fiTQun

- Tested on a uniform distribution of muons between 0 and 1 GeV/c
 - Isotropic & random position (inside FV & charge>200pe)
- Significant improvements in the vertex and momentum resolution

Electrons with fiTQun

- Tested on a uniform distribution of e⁻ between 0 and 1 GeV/c
 - Isotropic & random position (inside FV & charge>200pe)
- Significant improvements in the vertex and momentum resolution

Single Track PID with fiTQun

- Simple line cut can be used to separate muons and electrons
- Significantly improved particle ID

