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The Usual Suspects: Dijet Resonances 
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s-channel Resonance
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Simplified s-channel Model
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Resonance

i,j = u,d,g,γ,W,Z

x,y = j,t,b,g,γ,W,Z,h

NB: If x,y can be light quarks, 
 t-channel process may be relevant
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Resonance 
Characteristics

Corresponding
Observables

couplings BR, σ * BR  

mass, width dσ/dmab

spin dσ/dcosθab

x,y (each channel)
flavor tagging; 
jet substructure

i,j event properties



Narrow Width Approximation

(Note: Can be corrected for K-factor(s) & Acceptance)
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Branching Ratios
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Simplest case: one relevant incoming / outgoing state

 1/4 (ij ! R ! xy)

 1/2 (ii ! R ! xy)

 1 (ij ! R ! ij)

 2 (ii ! R ! ii)
} Upper bound on product of BR 

shows which classes of models    
are viable.



Better Variable:    

Simplest case: one relevant incoming / outgoing state

•  Collapses different widths onto a single curve 
•  For upper bound, use 
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Les Houches 
Pre-Proceeding 2015
The Diboson Excess:  

Experimental Situation and  
and Classification of Experiments  

arXiv:1512.04537

1-100 fb 
“WZ” excess ?

Spin-1 triplets (V ±, V 0)

Prod. WW ZZ WZ Wh Zh �h W� Z� �� gg hh Q3Q3 qq ll `±⌫ X Ref.
DY X X (X) (X) (X) (X) [39, 140–142]
DY X X X X X̄

qq

X (X) (X) [40, 42, 43, 111]
DY X X X X (X) (X) (X) (X) [44]
DY X X X X X̄

qq

X (X) (X) (X) [112]
DY X X X

WZ

X
WW

X̄
qq

X (X) (X) [45, 46, 85, 91]
DY X X X

WZ

X
WW

X X (X) (X) [41]

Spin-1 V 0

Prod. WW ZZ WZ Wh Zh �h W� Z� �� gg hh Q3Q3 qq ll `±⌫ X Ref.
DY X X

WW

X̄
qq

X [84]
DY X X

WW

X̄
qq

X X [117]
DY X X X X [118]

Spin-1 V ±

Prod. WW ZZ WZ Wh Zh �h W� Z� �� gg hh Q3Q3 qq ll `±⌫ X Ref.
DY X X

WZ

X̄
qq

X X [86, 90, 92–94]
DY X X

WZ

X̄
qq

X [87, 88]

Scalar

Prod. WW ZZ WZ Wh Zh �h W� Z� �� gg hh Q3Q3 qq ll `±⌫ X Ref.
gg X X X X X [75, 131, 143]
gg X X (X) (X) X X

WW/2 (X) [73]
gg X X

WW/2 X X X X X (X) [141]
qq̄ X X

WW/2 (X) (X) X X X [123–125]

’Unconventional’

Torsion-free Einstein-Cartan theory [144]
Tri-boson interpretation: pp ! R ! V Y ! V V 0X [136]

[Implications in other observables (direct and indirect)] [95, 97, 142, 145–148]
[Next to leading order predictions] [148]

[Analysis techniques] [102, 106, 149, 150]

Table 1: Overview of the models. Checkmarks highlight relevant decay channels in
the model at hand, while parentheses denote channels of subleading phenomenological
importance. A subscript on the checkmark X

f

signals the branching ratio of the channel
with final state f to be equal (to leading order) to the one considered in that column.
We note that in some scenarios of the Scalar section, spin-2 resonance(s) could also be
relevant for the excess (see e.g. [73]).

6 Conclusions

In this paper we have summarized the experimental situation of the alleged diboson
excess around ⇠ 2 TeV seen by the LHC. We have provided a thorough analysis of the
di↵erent channels with their relative significances. We have given di↵erent theoretical
interpretations that necessarily imply the existence of new resonance(s) and an extension
in the sector that breaks electroweak symmetry. All models fall into either supposing
a strong coupling origin for the electroweak symmetry breaking or extending the gauge
or Higgs sectors. We have given an overview of the di↵erent proposals and discussed
the production cross section of the resonance capable of explaining the excess and its
di↵erent decay modes. In the coming days the first results will be coming from the LHC
run-II and we will get further hints to whether this is a real excess or just a statistical
fluctuation.

26

data?

models?

Memory Lane:  DiBoson Excess



DiBoson Vector Resonances

CTEQ6L1

Extended Gauge Model 
would not explain excess  

WZ→R→WZ 

Impossible!

ud→R→WZ 

Plausible 

Channel

In shaded region,  
has physically allowed value  

⇣

ATLAS 95% c.l. upper bounds from 20.3 fb-1 at 8 TeV 
 JHEP 12, 055 (2015)                                                                                     

. 



Multiple Production and Decay Modes 

Easy to evaluate for any  
model class or model

Reporting experimental  
limits in this format  

simplifies comparison  
with theory
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Vector Resonance in Dilepton Channel

Sequential SM Z’ is 
excluded below ~3.5 TeV 

band indicates range between 
Resonances (R)  

coupling only to up-type quarks  
vs. only to  down-type quarks  

 ATLAS 95% c.l. upper bounds from 3.2 fb-1 at 13 TeV 
 ATLAS-CONF-2015-070                                                  

. 



Leptophobic Vector Resonance in Dijets

Sequential SM Z’  

band indicates range between  
Resonances (R) coupling only to  

up-type vs. only to down-type quarks  

1st -> 1st 1st -> 3rd

dd̄
uū

uū

dd̄

data doesn’t  
constrain  

high-mass  
region

 ATLAS 95% c.l. upper bounds from 3.6 fb-1               
at 13 TeV      Phys. Lett. B754, 302 (2016)                                                 

. 
 ATLAS 95% c.l. upper bounds from 3.2 fb-1  
at 13 TeV       Phys. Lett. B759, 229 (2016)                                                 

. 



Simplified Limits 
on s-channel resonances,  

framed as bounds on  

ζ = BRi BRf  𝚪/M 

highlight relevant production channels 
for a newly observed narrow resonance.



Limits on finite-width resonances



Breit-Wigner Approximation

(includes main impact of s-dependent widths)
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Color-octet scalar in dijets

NWA
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red curves are CMS 95% c.l. upper 
bounds from 19.7 fb-1 at 8 TeV 

 Phys. Rev. D 91, 052009 (2015)              

. 



Vector resonance in dileptons

NWA
Breit-Wigner
�/M = 0.03

Breit-Wigner
�/M = 0.3

ATLAS 95% c.l. upper bounds 
from 13.3 fb-1 at 13 TeV 

 ATLAS-CONF-2016-045              

. 

a Z’ model



Simplified Limits 
readily extend to finite-width resonances. 

The corresponding bound  
from the narrow-width approximation  
is generally a conservative estimate  

of the strength of the limit. 



• focus on model classes ⇔ production mechanisms 

• easily identify 
• exclusion limits on BSM resonances 
• whether data constrains a given channel 
• classes of models relevant for a given excess 
• [specific theories consistent with an excess] 

• ζ  derives directly from model parameters 
• works for narrow or finite-width resonances 

If collaborations report results 
in terms of ζ, as well as σ*BR, it will speed and 
deepen our understanding of new findings.

Benefits of Simplified Limits approach





14 7 Implications for quantum black holes
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Figure 7: Dijet mass distributions for qq (left) and gg (right) resonances with masses of 1, 2, 3,
4, and 5 TeV and two different values of G/M (10% and 1.5%). The corrections for the difference
in the JES between a parametric simulation and the GEANT4-based CMS simulation have been
applied.

Figure 8: Observed 95% CL upper limits on sBA as a function of the resonance mass for
different values of the width-to-mass ratio G/M, computed for qq ! G ! qq (left) and
gg ! G ! gg (right).

dijet invariant mass distribution expected from QBH decays is used here, in place of the reso-
nance line shape employed in the other analyses. The required mass shapes are modeled using
the QBH (v1.07) matrix-element generator [58] with the CTEQ6L1 PDF set [48], followed by
the parton showering simulation with PYTHIA 8 and a parametric, fast simulation of the CMS
detector [57]. The signal is characterized by a peak in the reconstructed dijet mass spectrum,
as shown in Fig. 10. The peak position is related to the minimum mass of QBHs, Mmin

QBH. The
relatively narrow shape is a consequence of the convolution of the threshold-like production
behavior for QBHs with the steeply falling parton luminosity as a function of the subprocess
center-of-mass energy. The low-mass dijet tails are due to detector resolution effects. The signal

Low-energy tail of broad peaks


