There's plenty of room in between at the Timing Frontier!
The HL-LHC Environment

The HL-LHC will have on average 200 overlapping events every beam crossing. Very difficult environment for finding tracks and associating to vertices. Probably even worse for future higher energy hadron collider. Especially difficult in the forward region, where track density is very compressed spatially, but where we have to find the forward scattered jets for VBF studies.
Event display showing the time and z position of all vertices in an event with 200 additional interactions. Blue ellipses correspond to truth vertices. The size of the ellipses are 30ps and 1mm. The red ellipse indicates the truth hard-scatter vertex. The dotted lines indicate the position of the reconstructed primary vertices in the event. The right plot is a zoom around the hard-scatter vertex.

Pile up of event vertices in space can be separated if we can get timing resolutions of ~30-60 ps in a high rate, radiation hard detectors with spatial resolutions ~1 mm
Ultra-Fast Silicon Detectors: LGAD (Low Gain Avalanche Detectors) Detectors with Gain and Large Electron Drift Velocity

Goal: Gain field ~ 300 kV/cm over a few μm near junction.
Bulk field ~ 20 kV/cm, gives a saturated electron drift velocity ~ 10^7 cm/sec. Want to have gain for electrons but not holes, leads to gain ~ 20.

Scaled Pulses: Beam Test Last August.
50 micron thick sensor

Pulse height divided by maximum value. Gives a standard pulse shape, which is very stable. This is why constant fraction discriminator works so well.

(Nicolò Cartiglia, Torino)

Jitter is the electronics contribution, which is noise/slew rate. Landau is contribution of variations in charge deposition.

(A.Seißen, 2017 Americas Workshop on Linear Colliders)
Timing Optimized Deep Depleted APDs

- Medium-gain (300x) APD read out with capacitatively coupled mesh
- Gain and drift regions overlap, mesh helps stabilize E-field over device

- 20ps resolution achieved for large sensors (8x8mm2), high capacitance
- No conclusive studies of irradiation at the moment

Mesh visible atop mounted sensor

(L. Gray, FNAL) (S. White, et al.)
Fast Scintillating Crystals for Precision Timing

- Thin crystals with SiPM affixed to back, photostatistics drive time resolution
- Depending on light collection, and dark count rate, time resolution can be as good as 10 ps
- Reducing SiPM coverage of crystal reduces light collection efficiency and timing resolution

However, crystal too heavy to use within a tracker

\[\sigma_{\text{coinc}} = (26.9 \pm 0.6) \text{ ps} \]
\[\sigma_{\text{coinc}} = (14.5 \pm 0.5) \text{ ps} \]

\(\sigma \sim 10 \text{ ps / crystal} \)

A. Benaglia, P. Lecoq, et al., Pub. in Preparation
On the Properties of Crystal Timing in LYSO

(L. Gray, FNAL)

R. Svoboda, DPF 2017
Large Area Picosecond PhotoDetectors (LAPPDs)

- LAPPDs are 8” x 8” MCP-based imaging photodetectors, with target specifications of:
 - ~50 picosecond single-PE time resolution
 - < 1 cm spatial resolution
 - > 20% QE
 - > 10^6 gain
 - low dark noise (<100 Hz/ch)
 - Strip line readout

- Ring Imaging Detectors
- TOF systems
- Optical tracking detectors (JUNO, TITUS, NUPRISM, CHIPS, HYPER-K, THEIA, ...)
- PET scanners
- ...

R.Svoboda, DPF 2017
higher, more uniform Q.E. has been achieved with good stability

Figure 15: TOP: LAPPD-15 QE map at 3 days (LEFT) and 32 days (RIGHT) after sealing. BOTTOM: The average QE at 375 nm remains at 30%, with a maximum 35% and minimum of 22%.
Timing pulses and gain distributions

Single photoelectron

40 Gs/s scope

Multi-photoelectron TTS

PSEC custom electronics

(M. Wetstein, ISU)
Measure Δt across strip for position in X, charge sharing between strips for position in Y

$X = (172 \text{ ps})(0.18 \text{ mm/ps})/2 = 15.5 \text{ mm offset}$

$\sigma_X = (13)(0.60 \text{ c}) = 1.2 \text{ mm}$
LAPPD has similar performance

Pulses from opposite sides of a readout strip

Time difference as a function of laser illumination gives $v=0.55 \, c$

millimeter-scale photon position with 30 ps time resolution and large area (400 cm2)
ANNIE Experimental Design

LAPPD Early Adopter - 2018

ANNIE completed Phase I background measurements July 2017 – ready for Phase II
LAPPDs are ready for use in ANNIIE

Incom has now produced multiple LAPPD prototypes, quickly approaching the specifications needed by ANNIIE.

ANNIE will need at least five LAPPDs by Fall, 2018 and could use as many as twenty in the current ANNIIE target tank.

ANNIE Collaboration LAPPD Test Stand at ISU
1. CC interaction in the fiducial volume produces a muon, reconstructed in the water volume and MRD
2. Neutrons scatter and thermalize
3. - 4. Thermalized neutrons are captured on the Gd producing flashes of light

CCQE events allow extraction of Q^2 from lepton reconstruction: vertex, direction, energy (from MRD)

significant event rate in 2.5 ton FV

This is the ANNIE goal

<table>
<thead>
<tr>
<th>Table 3: Fiducial Event Counts for 1 Year of Running</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
</tr>
<tr>
<td>Entering MRD</td>
</tr>
<tr>
<td>Stopping in MRD</td>
</tr>
<tr>
<td>Fully Penetrating MRD</td>
</tr>
<tr>
<td>Exiting Side of MRD</td>
</tr>
<tr>
<td>Neutron Multiplicity</td>
</tr>
<tr>
<td>Q^2 (GeV/c)</td>
</tr>
</tbody>
</table>

15
Fast Timing and Vertex/Direction Reconstruction

Phase II deployment of LAPPDs also necessary for kinematics

\[E_{V}^{QE} = \frac{(M + \varepsilon_B)E_{\mu} - (2M\varepsilon_B + \varepsilon_B^2 + m_{\mu}^2)/2}{M + \varepsilon_B - E_{\mu} + p_{\mu}\cos\theta_{\mu}} \]

\[Q_{QE}^2 = -2E_{V}^{QE}(E_{\mu} - p_{\mu}\cos\theta_{\mu}) + m_{\mu}^2 \]
Why does ANNIE need LAPPDs?

LAPPDs provide needed vertex resolution to select fiducial events and precise direction to reconstruct CCQE kinematics.

- 20% conventional PMTs: 60 cm resolution
- 5 LAPPDs (only): 38 cm resolution
- 21 LAPPDs (only): 16 cm resolution

Recommended to proceed to Phase II by FNAL PAC – endorsed by FNAL Director. Planned start Fall 2018.

(J.Wang, UCD and A.Back, ISU)
Breakthroughs in Neutrino Physics were enabled by the invention of large optical detectors using scintillator or water

Large size for cost, fast timing for background reduction, low threshold, **reconfigurable** as the field progressed
Water Cherenkov

- Excellent Transparency
 - large size
- Directionality
- Particle ID
- Potential for large Isotopic Loading

Liquid Scintillator

- High Light Yield
 - low threshold
- good energy resolution
- Can be radiologically very clean
Could we make a Hybrid Detector?

- Use LS mixed with oil or Water-based Liquid Scintillator (WbLS) to adjust light yield and transparency
- Directionality via fast timing to separate Cherenkov and Scintillation light
- Deep location to enable a broad program
- Reconfigurable design: "follow the physics"
...to follow the physics?

- Zero neutrino double beta decay in a neutrino mass Normal Ordering world (where ν_e is light)
- Detection of the Diffuse SN Neutrino Background
- High precision measurement of δ_{CP} – could it be maximal?
- Measurement of the CNO contribution to solar fusion
- Investigate the “New Solar Neutrino Problem”
- Observe a black hole formation in real time
- Investigate potential unexplored proton decay modes
- Investigate the Earth’s geothermal energy budget
- Dark matter in the Sun
- ...and so it goes
Intriguing Idea: Micelle sequestering of LS in water

Liquid Scintillator (LS) forms small (~10 nm scale) droplets called *micelles* in water that are stabilized by surfactant molecules with a hydrophilic head and hydrophobic tail. Micelles form under controlled chemical conditions and are shown to be stable over year time scales.

Can adjust scintillation yield by changing micelle concentration.
Dilution of LS in water allows for tuning light yield to match the physics.

WbLS cocktail in water (violet) and cyclohexane (blue)
Cherenkov/scintillation separation

Separate signals in: **CHESS**

- **Time**
 - Ultra-fast detection (LAPPD?)
 - Delay scint light
- **Charge**
 - Tune relative light yields
 - Readout sensitivity
- **Wavelength**
 - LS spectrum (fluor) / readout

Charge: look for Cher ring superimposed on isotropic scint “bkg”

Time: look for prompt Cher peak

C. Aberle et al, JINST 9 P06012 (2014)

R.Svoboda, DPF 2017
CHESS:
CHErenkov-Scintillation Separation

Select vertical cosmic muon events
Image Cherenkov ring in Q and T on fast-PMT array
Allows charge- and time-based separation

12 1-inch H11934 PMTs (300ps FWHM, 42% QE)
CAEN V1742 (5GHz)
675 samples (135ns window)
CAEN V1730 (500MHz)
Successful C/LS separation!

Time at fixed threshold
Corrected by ToF, channel delays

Ratio of charge in prompt, 5ns window
to charge in total (135ns) window

NOTE: Rise time = 0.75 ± 0.25 ns

(G. Orebi Gann, LBL)

arXiv:1610.02011
Conclusions

• **There is plenty of room in between!**
• No time to cover necessary fast electronics – important!
• Detectors with picosecond timing are starting to be developed that will have wide use in almost every sub-field of particle physics and have many commercial uses.
• **Important** for future of high rate colliders that need mm scale vertex resolution, low power, and radiation hardness
• **Important** for large neutrino detectors requiring high mass, low cost, wide dynamic range (sub-MeV to 10 GeV), plus the ability to load isotopes and operate with very high radiopurity for long periods of time and use doped water.
• **There is plenty of room in between!**
Phase I: background measurement

- the NCV was moved to 6 positions, scanning the neutron rates as a function of depth and distance from the beam
- strong suppression of skyshine neutrons was observed with increasing depth
- preliminary estimates based on measurements below the surface indicate neutron backgrounds in less than 2% of spills

Backgrounds are suppressed at depths > 50 cm and sufficiently low for Phase II
Progress Towards Phase II

- We have in hand free large area PMTs to use for Phase II. Need only ~40 8in new ones.

- New design for the LAPPD housing assemblies allows for LAPPDs to be installed into the already assembled detector.

- PMT and MRD readout systems and DAQ are already working and expandable.

- The LAPPD, PSEC-4 readout system is largely complete.
ANNIE Timeline

- **Summer 2017**
 - Removal of the tank from the Hall
 - Finish MRD refurbishment

- **Fall/Winter 2017**
 - PMT refurbishment and acquisition

- **Spring 2018**
 - PMT installation

- **Summer 2018**
 - Phase II commissioning
 - LAPPD installation

- **Fall 2018**
 - Reinstallation of inner structure and water fill
 - Introduction of Gd

- **Summer 2018**
 - Electronics acquisitions

- **Fall/Winter 2017**
 - Completion of Phase II inner structure and tank lid

- **Summer 2017**
 - Phase II data taking
ANNIE Q^2 Acceptance

It is important to measure neutron multiplicity as a function of these parameters and therefore we want a wide spread in neutrino energy and Q^2
ANNIE Phase I:

- A measurement of potential background neutrons in ANNIE Phase II
 - rock neutrons
 - “skyshine”

- A Neutron Capture Volume (NCV) measures position dependent neutron rates

- Phase I enabled ANNIE to build and operate all the main components of the detector
- It also provided an opportunity to anticipate, understand, and mitigate major risks for Phase II