Dark matter collider at DUNE: relativistic scattering of boosted DM

1612.06867 with Doojin Kim, Jong-Chul Park

Not easy tasks

Not easy tasks

- Keep probing the rest of the corners of parameter space: tons of models may be still there!!
- Non-conventional DM & search strategy must be considered!

Not easy tasks

- Keep probing the rest of the corners of parameter space: tons of models may be still there!!
- Non-conventional DM & search strategy can be considered!

Non-conventional DM scenarios

Secluded WIMP: DM-SM int. suppressed (avoid LHC & DD bounds)

Huh, Kim, Park, Park, 0711.3528 Pospelov, Ritz, Voloshin, 0711.4866 Kim, **SS**, 0901.2609

Kim, Lee, Park, **SS**, 1601.05089

 Flavorful (non-minimal) dark sector: multi-component DM and/or + unstable particles (like SM)

non-conventional thermal scenario expected

Belanger, Park, 1112.4491 Agashe, Cui, Necib, Thaler, 1405.7370 Kim, Park, **SS**, 1612.06867, 1702.02944

- Non-conventional interactions: self-interacting, strongly-interacting
- etc.....

Non-conventional DM scenarios

Secluded WIMP: DM-SM int. suppressed (avoid LHC & DD bounds)

Huh, Kim, Park, Park, 0711.3528 Pospelov, Ritz, Voloshin, 0711.4866

Kim, **SS**, 0901.2609

Kim, Lee, Park, **SS**, 1601.05089

 Flavorful (non-minimal) dark sector: multi-component DM and/or + unstable particles (like SM)

non-conventional thermal scenario expected

Belanger, Park, 1112.4491 Agashe, Cui, Necib, Thaler, 1405.7370 Kim, Park, **SS**, 1612.06867, 1702.02944

- Non-conventional interactions: self-interacting, strongly-interacting
- etc.....

Non-conventional search strategy needed!

Non-conventional search strategy

Relativistic scattering of DM with a target

Some components of DM relativistically produced: boosted DM

Agashe, Cui, Necib, Thaler, 1405.7370 Kong, Mohlaberg, Park, 1411.6632

(Light) DM can be produced in fixed target experiments

Bjorken, Essig, Schuster, Toro, 0906.0580

Batell, Pospelov, Ritz, 0906.5614

Izaguirre, Krnjaic, Schuster, Toro, 1403.6826

Non-conventional search strategy

e.g., boosted dark matter

Agashe, Cui, Necib, Thaler, 1405.7370

Non-conventional search strategy

e.g., boosted dark matter

Agashe, Cui, Necib, Thaler, 1405.7370

Belanger, Park, 1112.4491 Assisted freeze-out

 $\chi_h \chi_h \rightarrow \chi_l \chi_l$ (current universe) relativistic ** relic χ_l is non-relativistic

SM (5% of the Universe)

Cosmic frontier search

Collider search (active search)

SM (5% of the Universe)

Cosmic frontier search

Collider search (active search)

Non-relativistic DM (WIMP) scattering

SM (5% of the Universe)

Cosmic frontier search

Collider search (active search)

SM (5% of the Universe)

Cosmic frontier search

Collider search: Intensity frontier

DM (25% of the Universe)

Flavorful dark sector

Basic strategy: simple number counting over *v* background

Mandatory, Not easy

Flavorful dark sector

e-scattering: highly boosted

in an experiment with angular resolution ~ 3°

(Super/Hyper Kamiokande) for primary pe: 0.1 - 0.3 GeV

Moderate recoil E

e-scattering: highly boosted

in an experiment with angular resolution ≤ 1°

smaller volume (**DUNE**, SHiP better) for primary p_e: 0.03 - 1 GeV

Wider range of E cosmic & intensity intensity

p-scattering: less boosted

very sensitive!!

Promising in an experiment with Eth « 1 GeV

(DUNE, SHiP)

Need much larger flux for higher $E_{th} > 1 \text{ GeV}$ (SK/HK)

 $\chi_h \chi_h \rightarrow \chi_l \chi_l$ (current universe) relativistic

toy model: dark gauge boson X

$$g_{12} = 0.5, \ \epsilon = 0.0003$$

Required flux

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2
SK	13.6 yr	170	7.1	3500	5200
HK	1 yr	88	3.7	1900	2800
HK	$13.6 \mathrm{\ yr}$	(6.7)	0.28	140	210
DUNE	1 yr	190	9.0	150	1600
DUNE	13.6 yr	14	0.69	11	120

Assume no bkg.

unit: 10^{-7} cm⁻²s⁻¹

Remind, in a minimal BDM, flux over the whole skv $\mathcal{O}(10^{-7}\,\mathrm{cm}^{-2}\mathrm{s}^{-1})$ $m_{\chi_h} \sim O(10\,\mathrm{GeV})$ Promising example!

 $\chi_h \chi_h \rightarrow \chi_l \chi_l$ (current universe) relativistic

toy model: dark gauge boson X

$$g_{12} = 0.5, \ \epsilon = 0.0003$$

Required flux

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2
SK	13.6 yr	170	7.1	3500	5200
HK	1 yr	88	3.7	1900	2800
$_{ m HK}$	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210
DUNE	$1 \mathrm{\ yr}$	190	9.0	150	1600
DUNE	$13.6 \mathrm{\ yr}$	14	0.69	11	120

120

less sensitive than e

unit: 10^{-7} cm⁻²s⁻¹

Assume no bkg.

 $\chi_h \chi_h \rightarrow \chi_l \chi_l$ (current universe) relativistic

toy model: dark gauge boson X

 $g_{12} = 0.5, \ \epsilon = 0.0003$

Required flux

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2
SK	13.6 yr	170	7.1	3500	5200
HK	1 yr	88	3.7	1900	2800
HK	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210
DUNE	1 yr	190	9.0	150	1600
DUNE	$13.6 \mathrm{\ yr}$	14	0.69	11	120

13.6 yr of HK improves the sensitivity

Assume no bkg.

unit: 10^{-7} cm⁻²s⁻¹

 $\chi_h \chi_h \rightarrow \chi_l \chi_l$ (current universe) relativistic

toy model: dark gauge boson X $g_{12} = 0.5, \ \epsilon = 0.0003$

HK 1 yr 88 3.7 1900 2800 improvement HK 13.6 yr 6.7 0.28 140 210 in DUNE!!! DUNE 1 yr 190 9.0 150 1600 in DUNE!!!	$\mathbf{Exp.}$	Run time	$e ext{-ref.1}$	$e ext{-ref.2}$	$p ext{-ref.}1$	$p ext{-ref.}2$	
HK 13.6 yr 6.7 0.28 140 210 DUNE 1 yr 190 9.0 150 1600	SK	13.6 yr	170	7.1	3500	5200	Remarkable
DUNE 1 yr 190 9.0 150 1600	HK	1 yr	88	3.7	1900	2800	improvement
DUNE 1 yr 190 9.0 150 1600	HK	$13.6 \mathrm{yr}$	6.7	0.28	140	210	
	DUNE	1 yr	190	9.0	150	1600	
DUNE 13.6 yr 14 0.69 11 120 Fromising	DUNE	13.6 yr	14	0.69	11	120	Promising

Assume no bkg.

unit: 10^{-7} cm⁻²s⁻¹ (3 simultaneous signals)

Search in intensity frontier experiments

Intensity frontier: increase fluxes of incoming χ_l

Kim, Park, **SS**, ..., Work in progress

Search in intensity frontier experiments

Intensity frontier: increase fluxes of incoming χ_l

Kim, Park, SS, ..., Work in progress

Conclusions

- Flavorful/non-minimal dark sector (χι): cascade process
- Analyzed in current & future large volume v detectors:
 Super-K, Hyper-K, DUNE

e-scattering E_{th} low in Cherenkov light detectors (high σ) Sensitive with small flux Separation of two signals not easy (good for low p_e)

p-scattering

- E_{th} high in Cherenkov light detectors (low σ)
- Need large flux
- Separation of two signals & 3 visible objects: promising

cons

pros

Conclusions

- Flavorful/non-minimal dark sector (χι): cascade process
- Analyzed in current & future large volume v detectors:
 Super-K, Hyper-K, DUNE

e-scattering E_{th} low in Cherenkov light detectors (high σ) Sensitive with small flux Separation of two signals not easy (good for low p_e)

p-scattering

CONS

pros

- E_{th} high in Cherenkov light detectors (low σ)
- Need large flux
- Separation of two signals & 3 visible objects: promising

Conclusions

- Flavorful/non-minimal dark sector (χι): cascade process
- Analyzed in current & future large volume v detectors:
 Super-K, Hyper-K, DUNE

DUNE

e-scattering

• E_{th} low in Cherenkov light detectors (high σ)

Sensitive with small flux

 Separation of two signals not easy (good for low p_e)

cons

p-scattering

• E_{th} high in Cherenkov light detectors (low σ)

- Need large flux
 Intensity frontier exp.
- Separation of two signals & 3 visible objects: promising

cons

pros

Back up

Back up

e/N scattering prospects

Exp.	e-scattering	p-scattering	
Energy for primary scattering	Peaking towards smaller momentum transfer		
Threshold energy	Small	Large for Cherenkov Small for LArTPC	

Boosted DM

Minimal model example

Belanger, Park, 1112.4491

Agashe, Cui, Necib, Thaler, 1405.7370

Boosted DM

Minimal model example

Belanger, Park, 1112.4491

Agashe, Cui, Necib, Thaler, 1405.7370

Boosted DM

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ)
- $n\nu\tau \to p\tau \to p\ell\nu\ell \nu\tau (p + \ell)$ out out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC) and shape 8 energy

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \rightarrow p\tau \rightarrow p\ell\nu\ell \nu\tau (p + \ell)$: cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC), ring shape & energy

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

Cherenkov light detectors (Kamiokande)

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \rightarrow p\tau \rightarrow p\ell\nu\ell \nu\tau (p + \ell)$: cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC): ring shape & energy

Our signal (e-scattering)

Primary signal (clean): 0.1 - 0.3 GeV

Secondary signal (vague): higher E

Hadronized background

e from CC (clean): higher E

e from p/n (vague): lower E

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

Cherenkov light detectors (Kamiokande)

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \rightarrow p\tau \rightarrow p\ell\nu\ell \nu\tau (p + \ell)$: cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC): ring shape & energy

Our signal (e-scattering)

Primary signal (clean): 0.1 - 0.3 GeV

Secondary signal (vague): higher E

Hadronized background

e from CC (clean): higher E

e from p/n (vague): lower E

+ Number of events of $p(n) \rightarrow (2)e$ small

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

Cherenkov light detectors (Kamiokande)

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \rightarrow p\tau \rightarrow p\ell\nu\ell \nu\tau (p + \ell)$: cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC): ring shape & energy

Our signal (e-scattering)

Primary signal (clean): 0.1 - 0.3 GeV

Secondary signal (vague): higher E

Hadronized background

e from CC (clean): higher E

e from p/n (vague): lower E

+ Number of events of $p(n) \rightarrow (2)e$ small + directionality (GC)?

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

Ionization from the charged track (DUNE)

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \to p\tau \to p\ell\nu\ell\nu\tau(p + \ell)$: cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC): shower can be seen

Maybe DUNE can separate all possible backgrounds

Flux of atmospheric neutrino

 θ : zenith angle

Energetic neutrino ~ 10⁻⁴ cm⁻² s⁻¹

Sub-Sample	S	K-I	S	K-II	SI	K-III	Sk	K-IV	\mathbf{T}	otal			
	Livetime (days)												
FC and PC 1489		799		518		1993		4799					
UPMU	1646		828		636		1993		5103				
		Number of				er of Ev	vents				Interaction [%]		
FC e -like $\times 0.1$	or sr	maller									$ u_e { m CC}$	$ u_{\mu} { m CC}$	NC
sub-GeV single-ring	3288	(3104.7)	1745	(1632.8)	1209	(1100.7)	4251	(4072.8)	10493	(9911.0)	94.1	1.5	4.4
multi-GeV single-ring	856	(842.8)	396	(443.7)	274	(299.5)	1060	(1080.0)	2586	(2666.0)	86.3	3.2	10.5
multi-GeV multi-ring	449	(470.1)	267	(252.1)	140	(161.9)	634	(654.9)	1490	(1539.0)	73.0	7.6	19.4
FC μ -like													
sub-GeV single-ring	3184	(3235.6)	1684	(1731.8)	1139	(1152.0)	4379	(4394.7)	10386	(10514.0)	0.9	94.2	4.9
multi-GeV single-ring	712	(795.4)	400	(423.9)	238	(273.9)	989	(1051.5)	2339	(2544.7)	0.4	99.1	0.5
multi-GeV multi-ring	603	(656.5)	337	(343.8)	228	(237.9)	863	(927.8)	2031	(2166.0)	3.4	90.5	6.1
PC													
stop	143	(145.3)	77	(73.2)	54	(53.3)	237	(229.0)	511	(500.8)	12.7	81.7	5.6
$ ext{thru}$	759	(783.8)	350	(383.0)	290	(308.8)	1093	(1146.7)	2492	(2622.3)	0.8	98.2	1.0
UPMU													
${f stop}$	432.0	(433.7)	206.4	(215.7)	193.7	(168.3)	492.7	(504.1)	1324.8	(1321.8)	1.0	97.7	1.3
non-showering	1564.4	(1352.4)	726.3	(697.5)	612.9	(504.1)	1960.7	(1690.3)	4864.3	(4244.4)	0.2	99.4	0.3
showering	271.7	(291.6)	110.1	(107.0)	110.0	(126.0)	350.1	(274.4)	841.9	(799.0)	0.1	99.8	0.1

Sub-Sample	S	K-I	S	K-II	SI	K-III	Sk	K-IV	\mathbf{T}	otal			
	Livetime (days)										,		
FC and PC	1489		799		518		1993		4799				
UPMU	1646		828		636		1993		5103				
		Number of Events							Intera	iction	[%]		
FC e-like × 0.1	or sr	maller									$ u_e { m CC}$	$ u_{\mu} { m CC}$	NC
sub-GeV single-ring	3288	(3104.7)	1745	(1632.8)	1209	(1100.7)	4251	(4072.8)	10493	(9911.0)	94.1	1.5	4.4
multi-GeV single-ring	856	(842.8)	396	(443.7)	274	(299.5)	1060	(1080.0)	2586	(2666.0)	86.3	3.2	10.5
multi-GeV multi-ring	449	(470.1)	267	(252.1)	140	(161.9)	634	(654.9)	1490	(1539.0)	73.0	7.6	19.4
FC μ -like		, ,		, ,		` ,		, ,		, ,			
sub-GeV single-ring	3184	(3235.6)	1684	(1731.8)	1139	(1152.0)	4379	(4394.7)	10386	(10514.0)	0.9	94.2	4.9
multi-GeV single-ring	712	(795.4)	400	(423.9)	238	(273.9)	989	(1051.5)	2339	(2544.7)	0.4	99.1	0.5
multi-GeV multi-ring	603	(656.5)	337	(343.8)	228	(237.9)	863	(927.8)	2031	(2166.0)	3.4	90.5	6.1
PC													
stop	143	(145.3)	77	(73.2)	54	(53.3)	237	(229.0)	511	(500.8)	12.7	81.7	5.6
$ ext{thru}$	759	(783.8)	350	(383.0)	290	(308.8)	1093	(1146.7)	2492	(2622.3)	0.8	98.2	1.0
UPMU													
stop	432.0	(433.7)	206.4	(215.7)	193.7	(168.3)	492.7	(504.1)	1324.8	(1321.8)	1.0	97.7	1.3
non-showering	1564.4	(1352.4)	726.3	(697.5)	612.9	(504.1)	1960.7	(1690.3)	4864.3	(4244.4)	0.2	99.4	0.3
showering	271.7	(291.6)	110.1	(107.0)	110.0	(126.0)	350.1	(274.4)	841.9	(799.0)	0.1	99.8	0.1

Collider as a heavy-state probe

Conventional colliders

- ☐ Head-on collision of light SM-sector (stable) particles
- ☐ to produce heavier states
- and study resulting phenomenology

Dark matter colliders

- ☐ Collision of light dark-sector (stable)
 particles onto a target
- ☐ to produce heavier dark-sector states
- □ and study resulting phenomenology

Search in intensity frontier experiments

Intensity frontier: increase fluxes of incoming χ_l

Kim, Park, **SS**, ..., Work in progress

Exp.	DUNE	SHiP [†]	SK/HK [‡]		
Near-far detector	Yes	Yes	(Yes)		
Distance b/w detectors	1,300 km	50 m	800 km		
Volume*	8/ <mark>40</mark> kt	9.6 kt/NA	(190/190) kt		
			22.5 kt for SK		
Detector type	Liquid Ar	Emulsion/Calorimeter	Cherenkov		
Particle identification	Very good	Very good	Good		
Beam energy	120 GeV	400 GeV	30 GeV		
РоТ	11×10^{20} /year	0.4×10^{20} /year	27×10^{20} /year		
Power	1.2 MW	(> 0.16 MW)	1.3 MW		
Angular resolution (e/p)	1°/5°	(Good)	3°/3°		
Threshold energy	20 – 30 MeV	(Equally small)	100 - 1000 MeV*		
Position resolution	1 – 2 cm	0.1 – 1 mm	Not good		

Passive search of relativistic DM scattering

 $\chi_h \chi_h \rightarrow \chi_l \chi_l$ (current universe) relativistic

Identify the signals by simple counting Nobs over the expected bkg.

Passive search of relativistic DM scattering

 $\chi_h \chi_h \rightarrow \chi_l \chi_l$ (current universe) relativistic

Identify the signals by simple counting Nobs over the expected bkg.

Interesting but not easy to confirm the signals over ν

neutrino

Passive search of relativistic DM scattering

 $\chi_h \chi_h \rightarrow \chi_l \chi_l$ (current universe) relativistic

Modification of minimal models make them super promising

From Sun: a small coupling of χ_h - SM or self-interaction of χ_h
 Berger, Cui, Zhao, 1410.2246 Kong, Mohlaberg, Park, 1411.6632
 Alhazmi, Kong, Mohlaberg, Park, 1611.09866

 Non-minimal dark sector (just like SM?): extraordinary signal Kim, Park, SS, 1612.06867

Energy spectrum: e-scattering

e-scattering preferred over p-scattering

- Primary scattering cross section large when momentum transfer small
- <u>Eth low</u> for e-scattering but high for p-scattering (Cherenkov detectors)
 <u>Kamiokande</u>
- Proton scattering is suppressed by atomic form factor

e-scattering: highly collimated

e-scattering: highly collimated

e-scattering: highly collimated

e-scattering: detection prospects

p-scattering NOT preferred over e-scattering (Cherenkov)

- Primary scattering cross section large when momentum transfer small
- E_{th} high for proton scattering (for Cherenkov)
- Proton scattering is suppressed by atomic form factor

p-scattering NOT preferred over e-scattering (Cherenkov)

- Primary scattering cross section large when momentum transfer small
- E_{th} high for proton scattering (for Cherenkov)
- Proton scattering is suppressed by atomic form factor

p-scattering NOT preferred over e-scattering (Cherenkov)

- Primary scattering cross section large when momentum transfer small
- E_{th} high for proton scattering (for Cherenkov)
- Suppression by atomic form factor: not so severe for pp < 2 GeV

However, the cascade process is still unique

- Eth low for proton scattering for liquid Ar detectors (DUNE: Eth 50 MeV)
- Separation of two signals are more promising than e-scattering

- Eth low for proton scattering for liquid Ar detectors (DUNE: Eth 50 MeV)
- Separation of two signals super good & 3 visible objects
 for both Kamiokande & DUNE