

Search for electroweak production of a vectorlike quark decaying to a top quark and a Higgs or Z boson using boosted topologies in an all-hadronic final state

ERICH SCHMITZ, UNIVERSITY OF KANSAS

SCHMITZ - DPF 2017

Vector like Quarks

Heavy quark, spin 1/2

 Chiralities transform the same under SM gauge group

Contained in various SM extensions

Such as Little Higgs, Composite Higgs

Why VLQs?

- Potential solution to hierarchy problem
- Conventional 4th generation is excluded
- Mass not constrained by Yukawa coupling

For this talk:

top partner, charge +2/3

VLQ Type	Charge	Decays	
Т	+2/3	bW ⁺ , tH, tZ	
В	-1/3	tW ⁻ , bH, bZ	
Х	5/3	tW ⁺	
Y	-4/3	bW ⁻	

Types of Production

Single

- Mediated by electroweak interaction
- Model dependent cross section
 - Relies on coupling at production vertex
- Dominates with higher masses (above 1 TeV)
- Our range \rightarrow M(T) = 1000-1800 GeV

In Pairs

- Mediated by strong interaction
- Model independent cross sections
 - Relies on strong coupling

Single T→tH/Z

Two single production modes explored:

- **pp→Tbq,** charged current
- **pp→Ttq,** neutral current
- All hadronic decay: H/Z \rightarrow $b\overline{b}$, t \rightarrow bW
- Left and Right handed couplings

Cross sections:

- Evaluated using Simplest Simplified Model, <u>arXiv:1409.0100</u>
- Depends quadratically on scaling factors: c^{bW} , c^{tZ} (for tH case)
- **pp→Tbq**: 0.174-1.950 pb for M(T) = 1000-1800 GeV
- **pp→Ttq**: 0.0324-0.285 pb for M(T) = 1000-1800 GeV

Boosted Jets with Fully Hadronic Decay Mode

Above 1 TeV masses, jets become Lorentz boosted

- Decays are fully merged into a single jet
- Can use substructure techniques for tagging jets

Substructure Used:

- Jet mass grooming
- N-subjettiness ($\tau_2/\tau_1, \tau_3/\tau_2$)
 - Higgs \rightarrow two hard subjets (small τ_2/τ_1)
 - top \rightarrow three hard subjets (small τ_3/τ_2)

Jet Tagging with Substructure

Jet Mass grooming \rightarrow help identify H, t jets

• Pruned

•
$$\frac{(\min(p_{T1}, p_{T2}))}{p_{Tp}} > 0.1; \ \Delta R_{12} < 0.5 \times \frac{m_{jet}}{p_{T}}$$

Soft Drop

$$\frac{(\min(p_{T_1}, p_{T_2}))}{p_{T_1} + p_{T_2}} > z_{cut} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}; z_{cut} = 0.1, \ \beta = 0$$

N-subjettiness

- Discriminate against multijet background
- Multijet \rightarrow large τ_2/τ_1 and τ_3/τ_2

Subjet b-tagging

- Combined Secondary Vertex algorithm
- Combination of track, secondary vertex variables

Analysis Cuts

2.3 fb⁻¹ pp collision data at \sqrt{s} = 13 TeV collected in 2015 by CMS

Events selected by 2-stage trigger

- Level $1 \rightarrow$ loose jet requirements
- High Level Trigger (HLT)
 - Scalar sum of jet p_T > 800 GeV required

Jet candidates from HLT reconstructed with anti- k_{T} algorithm, R=0.4, 0.8 (labeled AK4, AK8 respectively)

Main Selection:

At least 4 AK4 jets $ightarrow p_T$ > 30 GeV, $|\eta|$ < 5

At least 1 AK8 jet $ightarrow p_T$ > 300 GeV, $|\eta|$ < 2.4

Scalar sum of AK4 jet p_T (H_T) > 1100 GeV

- 1 Higgs tagged jet:
 - Pruned Mass \rightarrow 105-135 GeV (Z \rightarrow 65-105 GeV)
 - $\tau_2 / \tau_1 < 0.6$
 - 2 subjet b-tags
- 1 Top tagged jet:
 - Soft drop mass → 110-210 GeV
 - $\tau_3/\tau_2 < 0.54$
 - 1 subjet b-tag
- $\Delta R(Higgs, top) > 2.0$

Mass of T after selection

Shown is the simulated M(T) distribution for 1000, 1200, 1500, and 1800 GeV mass points, after all cuts;

 $\sigma \mathcal{B}(T \rightarrow tH)$ set to 1 pb

 $pp \rightarrow Tbq$ on solid lines; $pp \rightarrow Ttq$ on dotted

Left handed coupling shown, which uses the $c_{\rm L}^{bW}$ scaling factor

Background Estimation

- **Backgrounds Considered**
 - **QCD Multijets** \rightarrow estimated with data
- $t\bar{t} + jets \rightarrow estimated$ with MC
- W + jets
- tW Single Top
- **Bold** \rightarrow main backgrounds
- ABCD Method used to estimate QCD background from data
- Predicts QCD background number and shape
- $\circ~$ N \rightarrow MC background subtracted from data in each region

Number Prediction:

$$\frac{N_D}{N_B} = \frac{N_C}{N_A} \rightarrow N_D = N_B \times \frac{N_C}{N_A}$$

Shape Prediction:

$$\mathcal{F}_D = \mathcal{F}_B \times \frac{N_c}{N_A}$$

Anti-Higgs jet \rightarrow same as Higgs jet, but failing subjet b-tagging

umber	Region	N(Higgs tag)	N(anti-Higgs tag)	N(top tag)		
cted from	А	0	>0	0		
	В	0	>0	>0		
	С	>0	≥0	0		
	D	>0	≥0	>0		
	SCHMITZ - DPF	2017		9		

M(T) After Full Selection

Background and Data in good agreement, within estimated uncertainties

Uncertainty shown in table is the combined statistical and systematic

Process	Events		
Estimated QCD	10.8±5.5		
Estimated $t\bar{t}$ +jets	24.3±8.1		
Estimated W+jets	0.6 ± 0.6		
Estimated Background	35.7 <u>±</u> 5.6		
Observed Events	30		

SCHMITZ - DPF 2017

Conclusion

Search performed for a single T quark, $T \rightarrow tH$, all hadronic decay

Using 3.2 fb⁻¹ pp collision data at 13 TeV collected by CMS, upper limits placed on $\sigma \mathcal{B}(T \rightarrow tH)$

- 0.31-0.93 pb for M(T) ranging from 1000-1800 GeV
- arXiv:1612.05336v2

Future analysis in this channel planned for combined 2016, 2017 datasets

Single VLQ Public Results

Vector-like quark single production

Observed limit 95%CL (TeV)

https://twiki.cern.ch/twiki/bin/view/CMSPubli

c/PhysicsResultsB2G

SCHMITZ - DPF 2017

Backup

Systematic Uncertainties

Dominant Sources

Shape Uncertainties → affects the shape of the M(T) distribution

Other Uncertainties: → Overall effect on event yield

JES \rightarrow Jet Energy Scale JER \rightarrow Jet Energy Resolution

Uncertainty	Variation	Signal	Background
Luminosity	2.7%	Yes	Yes
PU reweighting	5%	Yes	Yes
$t\bar{t}$ +jets cross section	6%	No	Yes
W+jets cross section	3.8%	No	Yes
PDF	1-3%	Yes	Yes
Higgs jet selection	10%	Yes	No
$\tau 2/\tau 1$ scale factor	12.5%	Yes	Yes
Higgs mass JES	2%	Yes	Yes
Top mass JES	2%	Yes	Yes
JES and JER	Shape (1-2%)	Yes	Yes
Top-tagging	Shape (15-30%)	Yes	Yes
H _T reweighting	Shape (1-3%)	No	Yes
B-tag scale factor	Shape (2-5%)	Yes	Yes