New Search for Mirror Neutrons at HFIR

Leah Broussard

Oak Ridge National Laboratory

August 3, 2017

Meeting of the American Physical Society Division of Particles and Fields (DPF 2017)

Mirror Matter

- Dark Matter candidate?
 - BBN/Cosmology requires T'/T ~ 0.2 → colder, He-dominated, smaller scale structure, faster star evolution^{1,2}
 - DM halos?³
 - WIMPs/axions are well motivated, but time to consider other possibilities...
- Implications for Baryon Number Violation

¹Z. Berezhiani, D. Comelli, F. L. Villante, PLB **503** (2001)

²R. Foot, Int. J. Mod. Phys. A **29** 1430013 (2014)

³J. Clarke and R. Foot, PLB **766** 29 (2017)

Neutron Oscillations

- Very testable prediction of neutral particle oscillations
 - Neutron: "turn on" oscillation with B field
- Weak experimental limits for fast neutron oscillation time!

$$\hat{H} = \begin{pmatrix} m - i\Gamma / 2 + \mu(\vec{B} \cdot \vec{\sigma}) & \varepsilon \\ \varepsilon & m' - i\Gamma' / 2 + \mu'(\vec{B}' \cdot \vec{\sigma}) \end{pmatrix}$$

$$P(n \to n') = \frac{\sin^{2}[(\omega - \omega')t]}{[(\omega - \omega')]^{2}2\tau^{2}} + \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}} + \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}} + \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}}$$

$$+ \cos\beta \left[\frac{\sin^{2}[(\omega - \omega')t]}{(\omega - \omega')^{2}2\tau^{2}} - \frac{\sin^{2}[(\omega + \omega')t]}{(\omega + \omega')^{2}2\tau^{2}} \right]$$

$$\omega = \frac{1}{2} |\mu B|, \ \omega' = \frac{1}{2} |\mu' B'|, \ \mu = \mu' \text{ and } \tau = \frac{1}{\varepsilon}$$

Small B' possible due to accumulated MM captured by earth

Prior $n \rightarrow n'$ searches

- UltraCold Neutrons (UCN): search for very small fractional loss
- Fairly strong limits if B'=0 ($\tau > 448 \text{ s}$)¹
 - Reanalysis found anomalous disappearance at B' ~ 100 mG, τ ~ 10 s;
 - Systematic effect? Real signal?
- Second measurement: no signal < 12 s

Cold neutrons vs UCN

- Quick primer: CN "beam" (reflect at glancing angles) and UCN "bottles" (totally internal reflection)
- UCN sensitivity
 - Vary $au_{storage}$ vs \vec{B}
 - LOW statistics, uncertainty of normalization, loss mechanisms?
 - Can only search for disappearance n → n'

- CN sensitivity
 - Less compact, flux monitoring challenging
 - BUT: can search for unambiguous $n \rightarrow n' \rightarrow n$

Neutron Regeneration

Wish List:

- High cold neutron flux + long, large area guides
- Disappearance: precise monitoring of changes in transmission
- Regeneration: large area, low background detector
- Magnetic field uniformity and control

GP-SANS at HFIR

- High Flux Isotope Reactor at Oak Ridge Nat'l Lab
- 85 MW reactor: highest reactor based source of neutrons for research in US
- Also considering NIST, SNS
- GP-SANS beamline: 1.8×10^{10} n/s
- At τ = 15 s:
 10⁴ n→n' per s
 0.05 n→n'→n per s

GP-SANS at HFIR

- Hostile takeover of existing instrument: General-Purpose Small Angle Neutron Scattering
- 14 m "Disappearance" and 20 m "Regeneration" beamlines
- Existing large area, low(ish) bkgd detector in shielded chamber
 - BONUS: movable!
- Room for B control coils, monitors

Magnetic field uniformity

- 20 mG spatial and temporal non-uniformity
 - Short duration 500 mG spikes
 - Some "hot spots" → beamline upgrade
- Design goal ~2 mG uniformity

solenoid (z) and Cos-theta coils (x-y)

Regeneration detector

- Sensitivity depends on Signal to Background
- 1 m x 1 m ³He, position-sensitive detector¹
 - $n+^3He \rightarrow t+p$
 - Large signal, well defined amplitude, insensitive to gamma radiation
 - 5 mm x 5 mm position resolution
- 2 x 10⁻⁴ cps/cm² background
 - Primarily from cosmogenic neutrons, moderated by concrete floor
 - Rely on position cuts and additional shielding/veto
 - Goal: 0.05 cps total

Neutron flux monitoring

• Require 10⁻⁷ level monitoring of neutron flux (disappearance only)

- Detector designed for n-3He spin rotation experiment (Indiana U.)
- Flux monitoring $\sim 1.1\sqrt{N}$
 - Demonstrated for 10⁻⁸ level asymmetry measurements
- Segmentation suppresses systematic, 1/f beam noise cancellation
- Monitor sequence cancels linear, quadratic drift (+ - - + - + + -)

Expected Sensitivity

Assumptions:

- Simulated HFIR flux/ beamline
- Bkgd as measured
- Statistics limited monitoring (50% monitor)

- Cover parameter space of UCN expts in 1 week beamtime
 - τ < 14 s (95% C.L.)
 - Key: GP-SANS heavily subscribed

What's next?

- Demonstrate feasibility
 - Prototype short section of magnetic field control
 - Demonstrate flux monitoring for disappearance
- Phase 1: Disappearance
 - Collimation upgrade in 2018 or 2019 (eliminate magnetic materials)
 - Flux monitor characterizations (10⁻⁷ level)
 - Implement mG-level magnetic field control
- Phase 2: Regeneration
 - Implement mG-level magnetic field control (limited access to chamber)
 - Implement additional background detectors, shielding, active veto system
- Expect to achieve interesting limits with very modest costs!

$n \rightarrow n'$ Collaboration

K Bailey, B Bailey, L Broussard, V Cianciolo, L DeBeer-Schmitt, A Galindo-Uribarri, F Gallmeier, G. Greene, E Iverson, S Penttila

Oak Ridge National Laboratory

J Barrow, B Chance, L Heilbronne, M Frost, Y Kamyshkov, C Redding, A Ruggles, B Rybolt, L Townsend, L Varriano S Vavra

University of Tennessee Knoxville

C Crawford

University of Kentucky Lexington

I Novikov

Western Kentucky University

D Baxter, C-Y Liu, M Snow

Indiana University

A Young

North Carolina State University

