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Mirror Matter

• Dark Matter candidate?
• BBN/Cosmology requires T’/T ~ 0.2 → colder, He-dominated, 

smaller scale structure, faster star evolution1,2

• DM halos?3

• WIMPs/axions are well motivated, but time to consider other 
possibilities…

• Implications for Baryon Number Violation

SM

1 Z. Berezhiani, D. Comelli, F. L. Villante,  PLB 503 (2001)
2R. Foot, Int. J. Mod. Phys. A 29 1430013 (2014) 
3J. Clarke and R. Foot, PLB 766 29 (2017)
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Neutron Oscillations

• Very testable prediction of neutral particle oscillations
• Neutron:  “turn on” oscillation with B field

• Weak experimental limits for fast neutron oscillation time!

• Small B’ possible due to accumulated MM captured by earth

Berezhiani and Bento PRL 96 (2006) 081801
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Prior n → n’ searches

• UltraCold Neutrons 
(UCN): search for very 
small fractional loss

• Fairly strong limits if 
B’=0 (τ > 448 s)1

• Reanalysis found 
anomalous 
disappearance at B’ ~ 
100 mG, τ ~ 10 s;

• Systematic effect?  Real 
signal?

• Second measurement: 
no signal < 12 s

1A. P. Serebrov et al, NIMA 611 (2009) 137
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Cold neutrons vs UCN

• Quick primer: CN “beam” (reflect at glancing 
angles) and UCN “bottles” (totally internal 
reflection)

• UCN sensitivity
• Vary 𝜏𝑠𝑡𝑜𝑟𝑎𝑔𝑒 vs 𝐵
• LOW statistics, uncertainty of

normalization, loss mechanisms?
• Can only search for 

disappearance n → n’

• CN sensitivity
• Less compact, flux monitoring challenging
• BUT: can search for unambiguous n → n’ → n
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Neutron Regeneration

Wish List:
• High cold neutron flux + 

long, large area guides

• Disappearance:  precise 
monitoring of changes in 
transmission

• Regeneration: large area, 
low background detector

• Magnetic field uniformity 
and control
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Simulated assuming τ = 14 s using HFIR flux/geometry
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GP-SANS at HFIR

• High Flux Isotope Reactor
at Oak Ridge Nat’l Lab

• 85 MW reactor: highest
reactor based source of 
neutrons for research 
in US

• Also considering NIST,
SNS

• GP-SANS beamline: 
1.8 × 1010 n/s 

• At τ = 15 s: 
104 n→n’ per s  
0.05 n→n’→n per s

Simulated

Φ = 1.14 × 109
𝑛

𝑐𝑚2𝑠

4 cm × 4 cm aperture, 0.3° divergence
1.8 × 1010 n/s expected in ±20×±20 cm at detector
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GP-SANS at HFIR

• Hostile takeover of existing 
instrument: General-Purpose Small 
Angle Neutron Scattering

• 14 m “Disappearance” and 20 m 
“Regeneration” beamlines

• Existing large area, low(ish) bkgd
detector in shielded chamber
• BONUS:  movable!

• Room for B control coils, monitors
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Magnetic field uniformity

• 20 mG spatial and temporal
non-uniformity
• Short duration 500 mG spikes

• Some “hot spots” → beamline 
upgrade 

• Design goal ~2 mG uniformity 
• solenoid (z) and Cos-theta coils (x-y)

Cos-theta coil:
Comsol simulation
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Regeneration detector

• Sensitivity depends on Signal to Background

• 1 m x 1 m 3He, position-sensitive detector1

• n+3He→t+p

• Large signal, well defined amplitude, insensitive 
to gamma radiation 

• 5 mm x 5 mm position resolution

• 2 x 10-4 cps/cm2 background
• Primarily from cosmogenic

neutrons, moderated by
concrete floor

• Rely on position cuts and
additional shielding/veto

• Goal: 0.05 cps total

1K. D. Berry et al, NIMA 693 (2012) 179
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Neutron flux monitoring

• Require 10-7 level monitoring of neutron flux 
(disappearance only)

• Detector designed for n-3He 
spin rotation experiment 
(Indiana U.)

• Flux monitoring ~ 1.1 𝑁
• Demonstrated for 10-8 level 

asymmetry measurements

• Segmentation suppresses 
systematic, 1/f beam noise 
cancellation

• Monitor sequence cancels linear, 
quadratic drift (+ - - + - + + -)

1S. D. Penn et al, NIMA 457 (2001) 332
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Expected Sensitivity

• Assumptions: 
• Simulated HFIR flux/

beamline

• Bkgd as measured

• Statistics limited 
monitoring (50% 
monitor)

• Cover parameter space of UCN expts in 1 week 
beamtime
• τ < 14 s (95% C.L.)

• Key: GP-SANS heavily subscribed
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What’s next?
• Demonstrate feasibility

• Prototype short section of magnetic field control
• Demonstrate flux monitoring for disappearance

• Phase 1:  Disappearance
• Collimation upgrade in 2018 or 2019 (eliminate magnetic 

materials)
• Flux monitor characterizations (10-7 level)
• Implement mG-level magnetic field control

• Phase 2: Regeneration 
• Implement mG-level magnetic field control (limited access to 

chamber)
• Implement additional background detectors, shielding, active 

veto system

• Expect to achieve interesting limits with very modest 
costs!
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