

Search for pair production of vector-like quarks in final states with a boosted W boson and b-jet

APS PARTICLES & FIELDS DPF 2017 Joseph Haley Oklahoma State University

With support from

5 F 3	ATLAS	+ Data
Ē300⊢ 🛉	36.1 fb ⁻¹	W+lets
3 1 1		Single top
250	1	Others -
EIB	8	Uncertainty -
200	Ø	-
E		
150		Control Begion
E	*	Post-Fit
100		-
	₩1	
50	🛏 🎬 .	
		. 1
814		
lan -		
a o F		1
502		
0 200	0 400 600 800 1	000 1200 1400 1600 1800 2000
		m ^{ap} _T [GeV]

Outline

Background

- What are vector-like quarks (VLQs) and why should you care?
- VLQ phenomenology

Search for $T \rightarrow WbWb$

- Selection and Analysis strategy
- What do we see?

Other channels

Conclusions

Hierarchy Problem

Vector-like Quarks (VLQs)

Colored, spin- $\frac{1}{2}$ particles \Rightarrow "Quarks"

Both chiralities transform the same under SM gauge groups \Rightarrow "Vector-like" VLQ current SM V-A current $(\bar{q}\gamma^{\mu}Q')$ $(\bar{q}\gamma^{\mu}(1-\gamma^5)q')$

Can have bare VLQ mass term

> Avoids constraints from Higgs measurements

Couple to SM through mixing with SM quarks

> Naturalness + FCNC constraints ⇒ mixing mostly with 3rd generation

Production and Decay

Pair Production (QCD)

Depends only on mass

Single production (EW)

• Depends on coupling and mass

Possible decays dictated by quantum numbers

- $T \rightarrow Wb, Zt, Ht$
- $B \rightarrow Wt$, Zb, Hb

Branching ratios depend on model

August 1, 2017

Joseph Haley – Oklahoma State U.

General Search Strategy

Multiple analyses to target each decay:

Set limits as a function of branching ratio

General Search Strategy

Multiple analyses to target each decay:

Set limits as a function of branching ratio

TT→WbWb: Basic Selection

Boosted W_{had} candidate

- R=1.0, anti- k_t jet trimmed
- $m > 50 \text{ GeV}, p_T > 200 \text{ GeV}$
- Jet substructure W-tag (50% efficiency)

TT→WbWb: Basic Selection

TT→WbWb: Basic Selection

• Pick combination with smallest $|m_{\tau}^{\text{lep}} - m_{\tau}^{\text{had}}| < 300 \text{ GeV}$

Test all parings of b candidates with W_{had} or W_{lep}

Final Selection

Signal Region (SR)

- Optimized for VLQ masses ≥ 1 TeV
 - $\succ \Delta R(\ell, \nu) < 0.7$
 - > $\mathbf{S}_{\mathbf{T}} \equiv \Sigma p_{\mathbf{T}}^{\text{jets}} + p_{\mathbf{T}}^{\varrho} + E_{\mathbf{T}}^{\text{miss}} > 1200 \text{ GeV}$

Control Region (**CR**) to constrain *tt*

Final variable: m_T^{lep}

Backgrounds

- Backgrounds estimated with MC simulations (expect multijet)
- Dominant uncertainties
 - Poisson uncertainty of data
 - Single top Wt removal scheme
 - > *tt* parton shower and generator
 - > Jet energy resolution

Sample	Signal region	Control region
$t\bar{t}$	55 ± 26	720 ± 130
W+jets	9 ± 4	78 ± 41
Single top	15 ± 15	160 ± 110
Others (Z+jets, diboson, ttV, multijet)	12 ± 10	82 ± 66
Total Background	91 ± 35	1040 ± 200
Signal ($m_T = 1$ TeV, $T \rightarrow Wb = 100\%$)	45 ± 4	15 ± 2
Signal ($m_T = 1$ TeV, SU(2) singlet)	21 ± 2	8 ± 1

Sample	Signal region	Control region
$t\bar{t}$	55 ± 26	720 ± 130
W+jets	9 ± 4	78 ± 41
Single top	15 ± 15	160 ± 110
Others (Z+jets, diboson, ttV, multijet)	12 ± 10	82 ± 66
Total Background	91 ± 35	1040 ± 200
Signal ($m_T = 1$ TeV, $T \rightarrow Wb = 100\%$)	45 ± 4	15 ± 2
Signal ($m_T = 1$ TeV, SU(2) singlet)	21 ± 2	8 ± 1

STATA

Limits on TT Production

Submitted to JHEP [arXiv:1707.03347]

Limits on TT Production

35

T Mass vs. Branching Ratio

Model-independent limits for arbitrary branching ratios, assuming $\mathcal{B}(T \rightarrow Wb) + \mathcal{B}(T \rightarrow Zt) + \mathcal{B}(T \rightarrow Ht) = 1$

Minimum allowed VLQ mass:

Stronger Together

Many other analyses with complementary sensitivity

• $TT \rightarrow Z(vv)t + X \rightarrow E_T^{miss} + \ell + jets$ Submitted to JHEP [arXiv:1705.10751]

• $TT \rightarrow Ht + X \rightarrow \ell + \geq 7j$ (2-4 b, 0-2 W/t) ATLAS-CONF-2016-104

• Plus others still in progress

August 1, 2017

Joseph Haley – Oklahoma State U.

Run 2 ATLAS Limits on T

Conclusions

- VLQs can provide a natural solution to the hierarchy problem
 ... but only if their mass is < 1-2 TeV
- Presented new ATLAS search for $T \rightarrow Wb + X$
 - > Data consistent with background-only
 - > Strongest limits for high $\mathcal{B}(T \rightarrow Wb)$
- With other channels, excluding masses up to 1 TeV for any branching ratios
 Similar results from CMS
- If VLQs solve the hierarchy problem, they are starting to feel the heat of Run 2!

Thank you!

Complete list of ATLAS exotic results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Also set limits on BB production

Acceptance

	$t\bar{t}$	Vector-like T		Vector-like B	
		$\mathcal{B}(T \to Wb) = 1$	SU(2) singlet	$\mathcal{B}(B \to Wt) = 1$	SU(2) singlet
Selection criteria	[%]	[%]	[%]	[%]	[%]
Base selection	5.9	28	25	33	22
$\geq 1 W_{\text{had}}$ cand.	1.3	24	23	29	20
$E_{\rm T}^{\rm miss} > 60 \; GeV$	66	94	68	92	91
$\geq 1b$ -tagged jet	74	80	85	89	88
$S_T \ge 1800 \ GeV$	0.6	71	68	64	64
$\Delta R(\text{lep}, \nu) \le 0.7$	71	90	75	72	68
$ \Delta m < 300 \ GeV$	81	90	83	82	80
Total acceptance	$1.1 \cdot 10^{-4}$	2.9	1.4	3.0	1.2

Joseph Haley – Oklahoma State U.

Submitted to JHEP [arXiv:1707.03347]

AUgusi I, ZUI7

Submitted to JHEP [arXiv:1707.03347]

0.05

0.1

Post-fit

Sample	Signal region	Control region
tī	39 ± 10	700 ± 70
W+jets	8 ± 4	78 ± 38
Single top	7 ± 4	110 ± 40
Others	10 ± 7	72 ± 48
Total background	64 ± 9	970 ± 50
Data	58	972

Joseph naley – Okianoma sidte U.

1.5

2

arXiv:1505.04306

Run 1 Limits on T

August 1, 2017

Joseph Haley – Oklahoma State U.

arXiv:1505.04306

Run 1 Limits on B

Joseph Haley – Oklahoma State U.