Search for new resonances decaying into boosted W, Z and H bosons at CMS
Caterina Vernieri (Fermilab), presented by Michael Krohn (University of Colorado)
2017 Meeting of the Division of Particles and Fields of the American Physical Society, 31 Jul-4 Aug 2017, Fermilab
Why look for Diboson resonances?

General searches for new physics connected to the gauge sector:
- coupled to W, Z and H bosons

Model independent analyses interpreted according to benchmark models:
- **Warped Extra Dimension:**
 Integration of gravity in SM and solution to hierarchy problem
 - Prediction of a spin-2 graviton or spin-0 radion
- **Heavy Vector Triplet model:**
 Hierarchy of the Higgs boson mass:
 - Introduction of spin-1 massive bosons (X^0, X^+, X^-)
Heavy resonances decaying to bosons

- Heavy new particles produce boosted SM bosons

\[\sim \text{TeV} \]

\[W/Z/H \quad \text{with } p_T \sim \text{few hundred GeV} \]

- Highest BR is from hadronic final states \((W/Z/H \rightarrow qq)\)
- Decay products from SM bosons are highly collimated

\[dR(qq) \sim 2m/p_T \]
Boosted bosons

Bosons produced with high p_T merge into a single large-R jet (0.8 CMS).
Boson tagging

The boosted $W/Z/H(b\bar{b})$ signal is identified as large cone size jets:
- $R=0.8$
- PUPPI (PileUp Per Particle Id) is used to mitigate pile up effects

Our tools:
- jet mass
- the composite nature of the jet using substructure
- b-tagging to reconstruct the two B hadrons from the b and \bar{b} within the same fat jet
 - Measurable lifetime: $\tau \sim 500 \, \mu m \rightarrow \beta \gamma c\tau \sim 5 \, mm$ @ 50 GeV
 - displaced secondary vertex

$H/Z(b\bar{b})$ background q/g
Boson Tagging observables

- **JET MASS AFTER GROOMING**
 - remove soft and wide-angle radiation (soft drop)
 - Primarily aimed to separate W/Z/H-jets from q/g

- **JET SUBSTRUCTURE**
 - measures the degree to which a jet can be considered as composed of N prongs

DPF 2017 — Caterina Vernieri (Fermilab), presented by Michael Krohn (CU)
Tagging observables

Identifies the two B hadron decay chains from b and \bar{b} within the same fat jet.

• Identifies the two B hadron decay chains from b and \bar{b} within the same fat jet.
X → VV/VH (V=W/Z)

- **Hadronic** final state benefit from the highest BR
 - most sensitive at high mass
- **Leptonic** states give more sensitivity at lower masses to beat down backgrounds
$X \rightarrow VV \rightarrow JJ$

- Online selection full efficient for resonance mass > 1 TeV
- Two large cone size jets, each compatible with V hypothesis
- Dijet mass is used to extract the signal
Sensitivity to BSM resonances decaying into WW, WZ and ZZ of cross section ~ 1-50 fb in the 1.2-4.1 TeV mass range
$X \to VH \to J_{b\bar{b}}$

- Similar approach as for $VV \to JJ$, and double-b tagging to identify the $H(b\bar{b})$ candidates
$X \rightarrow VH \rightarrow J_{bb}$

Sensitivity to BSM resonances decaying into WH and ZHZ of cross section ~ $1-100$ fb in the 1-4.5 TeV mass range
$X \rightarrow HH(4b)$

- Similar approach as VH/VV $\rightarrow JJ$ and double-b tagging to identify the H(bb) candidates
- Multijet background predicted from mass sidebands obtained by inverting the b-tagging requirement on the p_T leading jet
$X \rightarrow HH$

$H(b\bar{b})H(b\bar{b})$ most sensitive channel for $m_X > 400/500$ GeV

$H(\gamma\gamma)H(b\bar{b})$ complement in the low mass
The 13 TeV dataset should increase by a factor 3 by the end of Run 2 in 2018

- LHC will probe *smaller couplings with more data*

- Improvements are also possible from:
 - optimized events selection and improved object reconstruction
 - include *theory improvements* on SM predictions

Stay Tuned
-Additional Material-
Performance

~40% improvement

light

g(bb̄)

DPF 2017 — Caterina Vernieri (Fermilab), presented by Michael Krohn (CU)
The mistag rate is approximately flat across the p_T range by design.

Critical point for searches.
Kind of ABCD

* Get absolute normalization for the SR by interpolating between left and right jet mass sidebands
* using failed double-b tag events to predict those that would have passed
* If we require double-b tag on the other jet there is no overlap with VH

![Diagram showing the ABCD method]

AT * R = SR

Using A/B and C/D to predict N(AT)/N(SR) as function of jet mass
* but to take into account the correlations between double-b-tag and jet mass
 * more slices in jet mass
 * from a fit we determine the pass/fail ratio for the signal region
going further...

So we measure the R_p/f as function of jet mass

$AT \times R(m_J-125) = SR$

DPF 2017 — Caterina Vernieri (Fermilab), presented by Michael Krohn (CU)
Uncertainty on the prediction

We associate two different errors to the prediction:

* **uncertainty on transfer factor as correlated among bins**
 * 2-15% impact on exp sensitivity
* **bin-by-bin statistical uncertainty from the anti-tag region statistics**
 * 1-4% impact on exp sensitivity