

Wayne StatE UNIVERSITY

The Proton Radius Puzzle

Gil Paz

Department of Physics and Astronomy,
Wayne State University,
Detroit, Michigan, USA

Introduction: The proton radius puzzle

- Matrix element of EM current between nucleon states give rise to two form factors $\left(q=p_{f}-p_{i}\right)$

$$
\left\langle N\left(p_{f}\right)\right| \sum_{q} e_{q} \bar{q} \gamma^{\mu} q\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu}}{2 m} F_{2}\left(q^{2}\right) q^{\nu}\right] u\left(p_{i}\right)
$$

- Sachs electric and magnetic form factors

$$
\begin{array}{ll}
G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\frac{q^{2}}{4 m_{p}^{2}} F_{2}\left(q^{2}\right) & G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right) \\
G_{E}^{p}(0)=1 & G_{M}^{p}(0)=\mu_{p} \approx 2.793
\end{array}
$$

- The slope of G_{E}^{P}

$$
\left\langle r^{2}\right\rangle_{E}^{p}=\left.6 \frac{d G_{E}^{p}}{d q^{2}}\right|_{q^{2}=0}
$$

determines the charge radius $r_{E}^{p} \equiv \sqrt{\left\langle r^{2}\right\rangle_{E}^{p}}$

- The proton magnetic radius

$$
\left\langle r^{2}\right\rangle_{M}^{p}=\left.\frac{6}{G_{M}^{p}(0)} \frac{d G_{M}^{p}\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}
$$

Charge radius from atomic physics nature

- Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)] $r_{E}^{p}=0.84184(67) \mathrm{fm}$
more recently $\mathrm{r}_{E}^{p}=0.84087(39) \mathrm{fm}$ [Antognini et al. Science 339, 417 (2013)]
- CODATA value [Mohr et al. RMP 80, 633 (2008)] $r_{E}^{p}=0.87680(690) \mathrm{fm}$ more recently $r_{E}^{p}=0.87510(610) \mathrm{fm}$ [Mohr et al. RMP 88, 035009 (2016)] extracted mainly from (electronic) hydrogen
- 5σ discrepancy!
- This is the proton radius puzzle

What could be the reason for the discrepancy?

- What could the reason for the discrepancy?

What could be the reason for the discrepancy?

- What could the reason for the discrepancy?

1) Problem with the electronic extraction? (Part 1 of this talk)

What could be the reason for the discrepancy?

- What could the reason for the discrepancy?

1) Problem with the electronic extraction? (Part 1 of this talk)
2) Hadronic Uncertainty? (Part 2 of this talk)

What could be the reason for the discrepancy?

- What could the reason for the discrepancy?

1) Problem with the electronic extraction? (Part 1 of this talk)
2) Hadronic Uncertainty? (Part 2 of this talk)
3) New Physics?

Outline

- Introduction: The proton radius puzzle
- Part 1: Proton radii from scattering
- Part 2: Hadronic Uncertainty?
- Backup slides: Connecting $\mu-p$ scattering and muonic hydrogen
- Conclusions and outlook

Part 1: Proton radii from scattering

Problem with the electronic extraction?

- Recent development: use of the z expansion based on known analytic properties of form factors
- The method for meson form factors
[Flavor Lattice Averaging Group, EPJ C 74, 2890 (2014)]
- Now applied successfully to baryon form factors to extract $r_{E}^{p}, r_{M}^{p}, r_{M}^{n}, m_{A} \ldots$

PDG 2016: r_{E}^{p}

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p CHARGE RADIUS

This is the rms electric charge radius, $\sqrt{\left\langle r_{E}^{2}\right\rangle}$.

VALUE (fm)	DOCUMENT ID		TECN	COMMENT
0.8751 ± 0.0061	MOHR	16	RVUE	2014 CODATA value
$0.84087 \pm 0.00026 \pm 0.00029$	ANTOGNINI	13	LASR	μp-atom Lamb shift
- - We do not use the following data for averages, fits, limits, etc. - -				
$0.895 \pm 0.014 \pm 0.014$	${ }^{1}$ LEE	15	SPEC	Just 2010 Mainz data
0.916 ± 0.024	LEE	15	SPEC	World data, no Mainz
0.8775 ± 0.0051	MOHR	12	RVUE	2010 CODATA, ep data
$0.875 \pm 0.008 \pm 0.006$	ZHAN	11	SPEC	Recoil polarimetry
$0.879 \pm 0.005 \pm 0.006$	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor
$0.912 \pm 0.009 \pm 0.007$	BORISYUK	10		reanalvzes old ep data
$0.871 \pm 0.009 \pm 0.003$	HILL	10		z-expansion reanalvsis
$0.84184 \pm 0.00036 \pm 0.00056$	POHL	10	LASR	See ANTOGNINI 13
0.8768 ± 0.0069	MOHR	08	RVUE	2006 CODATA value
$\begin{array}{ll}0.844 & +0.008 \\ -0.004\end{array}$	BELUSHKIN	07		Dispersion analysis
0.897 ± 0.018	BLUNDEN	05		SICK $03+2 \gamma$ correction
0.8750 ± 0.0068	MOHR	05	RVUE	2002 CODATA value
$0.895 \pm 0.010 \pm 0.013$	SICK	03		$e p \rightarrow e p$ reanalysis

[Hill, GP PRD 82113005 (2010)] [Lee, Arrington, Hill, PRD 92, 013013 (2015)]

PDG 2016: r_{M}^{p}

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p MAGNETIC RADIUS

This is the rms magnetic radius, $\sqrt{\left\langle r_{M}^{2}\right\rangle}$.

- - We do not use the following data for averages, fits, limits, etc.

0.914 ± 0.035	LEE	15	SPEC	World data, no Mainz
0.87 ± 0.02	EPSTEIN	14		Using ep, en, $\pi \pi$ data
$0.867 \pm 0.009 \pm 0.018$	ZHAN	11	SPEC	Recoil polarimetry
$0.777 \pm 0.013 \pm 0.010$	BERNAUER	10	SPEC	$e p \rightarrow$ ep form factor
$0.876 \pm 0.010 \pm 0.016$	BORISYUK	10		Reanalyzes old ep \rightarrow ep data
0.854 ± 0.005	BELUSHKIN	07		Dispersion analysis

${ }^{1}$ Authors also provide values for a combination of all available data.

> [Epstein, GP, Roy PRD 90, 074027 (2014)]
> [Lee, Arrington, Hill, PRD 92, 013013 (2015)]

PDG 2016: r_{M}^{n}

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

n MAGNETIC RADIUS

This is the rms magnetic radius, $\sqrt{\left\langle r_{M}^{2}\right\rangle}$.

VALUE (fm)	DOCUMENT ID		COMMENT
$0.864_{-0.008}^{+0.009}$ OUR AVERAGE			
0.89 ± 0.03	EPSTEIN	14	Using ep, en, $\pi \pi$ data
$0.862_{-0.008}^{+0.009}$	BELUSHKIN	07	Dispersion analysis

$$
\text { [Epstein, GP, Roy PRD 90, } 074027 \text { (2014)] }
$$

Part 2: Hadronic Uncertainty?

[Hill, GP PRD 95, 094017 (2017), arXiv:1611.09917]

The bottom line

- Scattering:
- World $e-p$ data [Lee, Arrington, Hill '15] $r_{E}^{p}=0.918 \pm 0.024 \mathrm{fm}$
- Mainz e-p data [Lee, Arrington, Hill '15]
$r_{E}^{p}=0.895 \pm 0.020 \mathrm{fm}$
- Proton, neutron and π data [Hill, GP '10] $r_{E}^{p}=0.871 \pm 0.009 \pm 0.002 \pm 0.002 \mathrm{fm}$
- Muonic hydrogen
- [Pohl et al. Nature 466, 213 (2010)] $r_{E}^{p}=0.84184(67) \mathrm{fm}$
- [Antognini et al. Science 339, 417 (2013)] $r_{E}^{p}=0.84087(39) f m$
- The bottom line: using z expansion scattering disfavors muonic hydrogen
- Is there a problem with muonic hydrogen theory?

Muonic hydrogen theory

- Is there a problem with muonic hydrogen theory?
- Potentially yes!
[Hill, GP PRL 107160402 (2011)]
- Muonic hydrogen measures ΔE and translates it to r_{E}^{p}
- [Pohl et al. Nature 466, 213 (2010) Supplementary information] $\Delta E=206.0573(45)-5.2262\left(r_{E}^{p}\right)^{2}+0.0347\left(r_{E}^{p}\right)^{3} \mathrm{meV}$
- [Antognini et al. Science 339, 417 (2013), Ann. of Phy. 331, 127] $\Delta E=206.0336(15)-5.2275(10)\left(r_{E}^{p}\right)^{2}+0.0332(20) \mathrm{meV}$
- In both cases apart from r_{E}^{p} need two-photon exchange

Two photon exchange

- Apart from r_{E}^{p} we have two-photon exchange (TPE)

Two photon exchange

- Apart from r_{E}^{p} we have two-photon exchange (TPE)

$$
\begin{aligned}
W^{\mu \nu}= & \frac{1}{2} \sum_{s} i \int d^{4} x e^{i q \cdot x}\langle\boldsymbol{k}, s| T\left\{J_{\text {e.m. }}^{\mu}(x) J_{\text {e.m. }}^{\nu}(0)\right\}|\boldsymbol{k}, s\rangle \\
& =\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) W_{1}+\left(k^{\mu}-\frac{k \cdot q q^{\mu}}{q^{2}}\right)\left(k^{\nu}-\frac{k \cdot q q^{\nu}}{q^{2}}\right) W_{2}
\end{aligned}
$$

Two photon exchange

- Apart from r_{E}^{p} we have two-photon exchange (TPE)

$$
\begin{aligned}
W^{\mu \nu} & =\frac{1}{2} \sum_{s} i \int d^{4} x e^{i q \cdot x}\langle\boldsymbol{k}, s| T\left\{J_{\mathrm{e} . \mathrm{m} .}^{\mu}(x) J_{\mathrm{e} . \mathrm{m} .}^{\nu}(0)\right\}|\boldsymbol{k}, s\rangle \\
& =\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) W_{1}+\left(k^{\mu}-\frac{k \cdot q q^{\mu}}{q^{2}}\right)\left(k^{\nu}-\frac{k \cdot q q^{\nu}}{q^{2}}\right) W_{2}
\end{aligned}
$$

- Dispersion relations $\left(\nu=2 k \cdot q, Q^{2}=-q^{2}\right)$

$$
\begin{aligned}
& W_{1}\left(\nu, Q^{2}\right)=W_{1}\left(0, Q^{2}\right)+\frac{\nu^{2}}{\pi} \int_{\nu_{\mathrm{cut}}\left(Q^{2}\right)^{2}}^{\infty} d \nu^{\prime 2} \frac{\operatorname{Im} W_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}\left(\nu^{\prime 2}-\nu^{2}\right)} \\
& W_{2}\left(\nu, Q^{2}\right)=\frac{1}{\pi} \int_{\nu_{\mathrm{cut}}\left(Q^{2}\right)^{2}}^{\infty} d \nu^{\prime 2} \frac{\operatorname{Im} W_{2}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}}
\end{aligned}
$$

- W_{1} requires subtraction...
- Apart from r_{E}^{p} we have two-photon exchange (TPE)

- Imaginary part of TPE related to data: form factors, structure functions

Two photon exchange

- Apart from r_{E}^{p} we have two-photon exchange (TPE)

- Imaginary part of TPE related to data: form factors, structure functions
- Cannot reproduce it from its imaginary part:

Dispersion relation requires subtraction

- Need poorly constrained non-perturbative function $W_{1}\left(0, Q^{2}\right)$

Two Photon exchange: small Q^{2} limit

- Small Q ${ }^{2}$ limit using NRQED [Hill, GP, PRL 107160402 (2011)] The photon sees the proton "almost" like an elementary particle

Two Photon exchange: small Q^{2} limit

- Small Q ${ }^{2}$ limit using NRQED [Hill, GP, PRL 107160402 (2011)] The photon sees the proton "almost" like an elementary particle $W_{1}\left(0, Q^{2}\right)=2 a_{p}\left(2+a_{p}\right)+\frac{Q^{2}}{m_{p}^{2}}\left\{\frac{2 m_{p}^{3} \bar{\beta}}{\alpha}-a_{p}-\frac{2}{3}\left[\left(1+a_{p}\right)^{2} m_{p}^{2}\left(r_{M}^{p}\right)^{2}-m_{p}^{2}\left(r_{E}^{p}\right)^{2}\right]\right\}+\mathcal{O}\left(Q^{4}\right)$

Two Photon exchange: small Q^{2} limit

- Small Q ${ }^{2}$ limit using NRQED [Hill, GP, PRL 107160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$
\begin{gathered}
W_{1}\left(0, Q^{2}\right)=2 a_{p}\left(2+a_{p}\right)+\frac{Q^{2}}{m_{p}^{2}}\left\{\frac{2 m_{p}^{3} \bar{\beta}}{\alpha}-a_{p}-\frac{2}{3}\left[\left(1+a_{p}\right)^{2} m_{p}^{2}\left(r_{M}^{p}\right)^{2}-m_{p}^{2}\left(r_{E}^{p}\right)^{2}\right]\right\}+\mathcal{O}\left(Q^{4}\right) \\
-a_{p}=1.793, \bar{\beta}=2.5(4) \times 10^{-4} \mathrm{fm}^{3}, r_{M}=0.776(34)(17) \mathrm{fm}, \\
-r_{E}^{H}=0.8751(61) \mathrm{fm} \text { or } r_{E}^{\mu H}=0.84087(26)(29) \mathrm{fm} \\
W_{1}\left(0, Q^{2}\right)=13.6+\frac{Q^{2}}{m_{p}^{2}}(-54 \pm 7)+\mathcal{O}\left(Q^{4}\right)
\end{gathered}
$$

Two Photon exchange: small Q^{2} limit

- Small Q ${ }^{2}$ limit using NRQED [Hill, GP, PRL 107160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$
\begin{gathered}
W_{1}\left(0, Q^{2}\right)=2 a_{p}\left(2+a_{p}\right)+\frac{Q^{2}}{m_{p}^{2}}\left\{\frac{2 m_{p}^{3} \bar{\beta}}{\alpha}-a_{p}-\frac{2}{3}\left[\left(1+a_{p}\right)^{2} m_{p}^{2}\left(r_{M}^{p}\right)^{2}-m_{p}^{2}\left(r_{E}^{p}\right)^{2}\right]\right\}+\mathcal{O}\left(Q^{4}\right) \\
-a_{p}=1.793, \bar{\beta}=2.5(4) \times 10^{-4} \mathrm{fm}^{3}, r_{M}=0.776(34)(17) \mathrm{fm}, \\
-r_{E}^{H}=0.8751(61) \mathrm{fm} \text { or } r_{E}^{\mu H}=0.84087(26)(29) \mathrm{fm} \\
W_{1}\left(0, Q^{2}\right)=13.6+\frac{Q^{2}}{m_{p}^{2}}(-54 \pm 7)+\mathcal{O}\left(Q^{4}\right)
\end{gathered}
$$

- $\mathcal{O}\left(Q^{4}\right)$ depend on unmeasured higher dim. NRQED matrix elements See Ayesh Gunawardana's talk in this session

Two Photon exchange: small Q^{2} limit

- Small Q ${ }^{2}$ limit using NRQED [Hill, GP, PRL 107160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$
\begin{gathered}
W_{1}\left(0, Q^{2}\right)=2 a_{p}\left(2+a_{p}\right)+\frac{Q^{2}}{m_{p}^{2}}\left\{\frac{2 m_{p}^{3} \bar{\beta}}{\alpha}-a_{p}-\frac{2}{3}\left[\left(1+a_{p}\right)^{2} m_{p}^{2}\left(r_{M}^{p}\right)^{2}-m_{p}^{2}\left(r_{E}^{p}\right)^{2}\right]\right\}+\mathcal{O}\left(Q^{4}\right) \\
-a_{p}=1.793, \bar{\beta}=2.5(4) \times 10^{-4} \mathrm{fm}^{3}, r_{M}=0.776(34)(17) \mathrm{fm}, \\
-r_{E}^{H}=0.8751(61) \mathrm{fm} \text { or } r_{E}^{\mu H}=0.84087(26)(29) \mathrm{fm} \\
W_{1}\left(0, Q^{2}\right)=13.6+\frac{Q^{2}}{m_{p}^{2}}(-54 \pm 7)+\mathcal{O}\left(Q^{4}\right)
\end{gathered}
$$

- $\mathcal{O}\left(Q^{4}\right)$ depend on unmeasured higher dim. NRQED matrix elements See Ayesh Gunawardana's talk in this session

Two Photon Exchange: large Q^{2} limit

- Calculable in large Q^{2} limit using Operator Product Expansion (OPE) [J. C. Collins, NPB 149, 90 (1979)]
The photon "sees" the quarks and gluons inside the proton

$$
W_{1}\left(0, Q^{2}\right)=c / Q^{2}+\mathcal{O}\left(1 / Q^{4}\right)
$$

- Result was used to estimate two photon exchange effects
- c calculated in [J. C. Collins, NPB 149, 90 (1979)]

RENORMALIZATION OF THE COTTINGHAM FORMULA
John C. COLLINS *
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

Two Photon Exchange: large Q^{2} limit

- Calculable in large Q^{2} limit using Operator Product Expansion (OPE) [J. C. Collins, NPB 149, 90 (1979)]
The photon "sees" the quarks and gluons inside the proton

$$
W_{1}\left(0, Q^{2}\right)=c / Q^{2}+\mathcal{O}\left(1 / Q^{4}\right)
$$

- Result was used to estimate two photon exchange effects
- c calculated in [J. C. Collins, NPB 149, 90 (1979)]

RENORMALIZATION OF THE COTTINGHAM FORMULA
John C. COLLINS *
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

- Was it?

Two Photon Exchange: large Q^{2} limit

$$
\begin{aligned}
W^{\mu \nu}= & \frac{1}{2} \sum_{s} i \int d^{4} x e^{i q \cdot x}\langle\boldsymbol{k}, s| T\left\{J_{\mathrm{e} . \mathrm{m} .}^{\mu}(x) J_{\mathrm{e} . \mathrm{m} .}^{\nu}(0)\right\}|\boldsymbol{k}, s\rangle \\
& =\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) W_{1}+\left(k^{\mu}-\frac{k \cdot q q^{\mu}}{q^{2}}\right)\left(k^{\nu}-\frac{k \cdot q q^{\nu}}{q^{2}}\right) W_{2}
\end{aligned}
$$

- $W_{1}\left(0, Q^{2}\right)$ is dimensionless

$$
W_{1} \sim \frac{\langle\text { Proton }| O \mid \text { Proton }\rangle}{Q^{2}}+\mathcal{O}\left(\frac{1}{Q^{4}}\right)
$$

- O is a dimension 4 operator:
- Quarks: Spin 0: $m_{q} \bar{q} q$ Spin 2: $\bar{q}\left(i D^{\mu} \gamma^{\nu}+i D^{\nu} \gamma^{\mu}-\frac{1}{4} i \not D g^{\mu \nu}\right) q$
- Gluons: must be color singlet: $G_{a}^{\alpha \beta} G_{a}^{\rho \sigma}$
- What gluon operators can we have?

Gluon operators

- Gluons: must be color singlet $G_{a}^{\alpha \beta} G_{a}^{\rho \sigma}$ A product of $\left(E^{i}, B^{i}\right)$ and $\left(E^{j}, B^{j}\right)$ has $7 \times 6 / 2=21$ components:

Gluon operators

- Gluons: must be color singlet $G_{a}^{\alpha \beta} G_{a}^{\rho \sigma}$ A product of $\left(E^{i}, B^{i}\right)$ and $\left(E^{j}, B^{j}\right)$ has $7 \times 6 / 2=21$ components:
- 1 scalar: $G^{\mu \nu} G_{\mu \nu}=2\left(\vec{B}^{2}-\vec{E}^{2}\right)$

Gluon operators

- Gluons: must be color singlet $G_{a}^{\alpha \beta} G_{a}^{\rho \sigma}$ A product of $\left(E^{i}, B^{i}\right)$ and $\left(E^{j}, B^{j}\right)$ has $7 \times 6 / 2=21$ components:
- 1 scalar: $G^{\mu \nu} G_{\mu \nu}=2\left(\vec{B}^{2}-\vec{E}^{2}\right)$
- 1 pseudo scalar: $\epsilon_{\alpha \beta \rho \sigma} G^{\alpha \beta} G^{\rho \sigma}=E \cdot B$: ruled out by parity

Gluon operators

- Gluons: must be color singlet $G_{a}^{\alpha \beta} G_{a}^{\rho \sigma}$ A product of $\left(E^{i}, B^{i}\right)$ and $\left(E^{j}, B^{j}\right)$ has $7 \times 6 / 2=21$ components:
- 1 scalar: $G^{\mu \nu} G_{\mu \nu}=2\left(\vec{B}^{2}-\vec{E}^{2}\right)$
- 1 pseudo scalar: $\epsilon_{\alpha \beta \rho \sigma} G^{\alpha \beta} G^{\rho \sigma}=E \cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu \alpha} G_{\alpha}^{\nu}-\frac{1}{4} G^{\alpha \beta} G_{\alpha \beta} g^{\mu \nu}$ chromomagnetic stress-energy tensor
- What else?

Gluon operators

- Gluons: must be color singlet $G_{a}^{\alpha \beta} G_{a}^{\rho \sigma}$ A product of $\left(E^{i}, B^{i}\right)$ and $\left(E^{j}, B^{j}\right)$ has $7 \times 6 / 2=21$ components:
- 1 scalar: $G^{\mu \nu} G_{\mu \nu}=2\left(\vec{B}^{2}-\vec{E}^{2}\right)$
- 1 pseudo scalar: $\epsilon_{\alpha \beta \rho \sigma} G^{\alpha \beta} G^{\rho \sigma}=E \cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu \alpha} G_{\alpha}^{\nu}-\frac{1}{4} G^{\alpha \beta} G_{\alpha \beta} g^{\mu \nu}$ chromomagnetic stress-energy tensor
- What else? 10 components of

Gluon operators

象

- Gluons: must be color singlet $G_{a}^{\alpha \beta} G_{a}^{\rho \sigma}$ A product of $\left(E^{i}, B^{i}\right)$ and $\left(E^{j}, B^{j}\right)$ has $7 \times 6 / 2=21$ components:
- 1 scalar: $G^{\mu \nu} G_{\mu \nu}=2\left(\vec{B}^{2}-\vec{E}^{2}\right)$
- 1 pseudo scalar: $\epsilon_{\alpha \beta \rho \sigma} G^{\alpha \beta} G^{\rho \sigma}=E \cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu \alpha} G_{\alpha}^{\nu}-\frac{1}{4} G^{\alpha \beta} G_{\alpha \beta} g^{\mu \nu}$ chromomagnetic stress-energy tensor
- What else? 10 components of
$O^{\mu \alpha \nu \beta}=-\frac{1}{4}\left(\epsilon^{\mu \alpha \rho \sigma} \epsilon^{\nu \beta \kappa \lambda}+\epsilon^{\mu \beta \rho \sigma} \epsilon^{\nu \alpha \kappa \lambda}\right) G_{\rho \kappa} G_{\sigma \lambda}-$ all possible traces
For example $O^{0123}=G^{01} G^{23}+G^{03} G^{21}=E^{1} B^{1}-E^{3} B^{3}$

Gluon operators

- Gluons: must be color singlet $G_{a}^{\alpha \beta} G_{a}^{\rho \sigma}$ A product of $\left(E^{i}, B^{i}\right)$ and $\left(E^{j}, B^{j}\right)$ has $7 \times 6 / 2=21$ components:
- 1 scalar: $G^{\mu \nu} G_{\mu \nu}=2\left(\vec{B}^{2}-\vec{E}^{2}\right)$
- 1 pseudo scalar: $\epsilon_{\alpha \beta \rho \sigma} G^{\alpha \beta} G^{\rho \sigma}=E \cdot B$: ruled out by parity
- 9 components of traceless symmetric tensor: $G^{\mu \alpha} G_{\alpha}^{\nu}-\frac{1}{4} G^{\alpha \beta} G_{\alpha \beta} g^{\mu \nu}$ chromomagnetic stress-energy tensor
- What else? 10 components of
$O^{\mu \alpha \nu \beta}=-\frac{1}{4}\left(\epsilon^{\mu \alpha \rho \sigma} \epsilon^{\nu \beta \kappa \lambda}+\epsilon^{\mu \beta \rho \sigma} \epsilon^{\nu \alpha \kappa \lambda}\right) G_{\rho \kappa} G_{\sigma \lambda}-$ all possible traces
For example $O^{0123}=G^{01} G^{23}+G^{03} G^{21}=E^{1} B^{1}-E^{3} B^{3}$
- For protons: \langle Proton $| O^{\mu \alpha \nu \beta} \mid$ Proton $\rangle=0$

What about 〈Medium $\left|O^{\mu \alpha \nu \beta}\right|$ Medium \rangle ?
Solution looking for a problem...

Summary: Possible operators

- In total we have four operators with non-zero proton matrix elements.
- Quarks:
- Spin 0: $m_{q} \bar{q} q$
- Spin 2: $\bar{q}\left(i D^{\mu} \gamma^{\nu}+i D^{\nu} \gamma^{\mu}-\frac{1}{4} i \not D g^{\mu \nu}\right) q$
- Gluons:
- Spin 0: $G^{\mu \nu} G_{\mu \nu}$
- Spin 2: $G^{\mu \alpha} G_{\alpha}^{\nu}-\frac{1}{4} G^{\alpha \beta} G_{\alpha \beta} g^{\mu \nu}$

Summary: Possible operators

- In total we have four operators with non-zero proton matrix elements.
- Quarks:
- Spin 0: $m_{q} \bar{q} q$
- Spin 2: $\bar{q}\left(i D^{\mu} \gamma^{\nu}+i D^{\nu} \gamma^{\mu}-\frac{1}{4} i \not \square g^{\mu \nu}\right) q$
- Gluons:
- Spin 0: $G^{\mu \nu} G_{\mu \nu}$
- Spin 2: $G^{\mu \alpha} G_{\alpha}^{\nu}-\frac{1}{4} G^{\alpha \beta} G_{\alpha \beta} g^{\mu \nu}$

```
RENORMALIZATION OF THE COTTINGHAM FORMULA
John C. COLLINS *
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA
```

Received 23 October 1978

- In 1978 Collins calculated EM corrections to the nucleon mass with an emphasis on $m_{n}-m_{p}$
The mass only depends on spin-0 operators (q quark, $G^{\mu \nu}$ gluon)

$$
\begin{array}{l|c|c|}
\langle P| m_{q} \bar{q} q|P\rangle, \quad\langle P| G^{\mu \nu} G_{\mu \nu}|P\rangle \\
& \text { Quark } & \text { Gluon } \\
\hline \text { Spin-0 } & \text { Collins '78 } & \text { Collins '78 } \\
\hline
\end{array}
$$

Large Q^{2} behavior

- In 1978 Collins calculated EM corrections to the nucleon mass with an emphasis on $m_{n}-m_{p}$
The mass only depends on spin-0 operators (q quark, $G^{\mu \nu}$ gluon)

$$
\langle P| m_{q} \bar{q} q|P\rangle, \quad\langle P| G^{\mu \nu} G_{\mu \nu}|P\rangle
$$

	Quark	Gluon
Spin-0	Collins '78	Collins '78

- For $W_{1}\left(0, Q^{2}\right)$ you need also spin-2 operators

$$
\langle P| \bar{q}\left(i D^{\mu} \gamma^{\nu}+i D^{\nu} \gamma^{\mu}-\frac{1}{4} i \not D g^{\mu \nu}\right) q|P\rangle, \quad\langle P| G^{\mu \alpha} G_{\alpha}^{\nu}-\frac{1}{4} G^{\alpha \beta} G_{\alpha \beta} g^{\mu \nu}|P\rangle
$$

Large Q^{2} behavior

- In 1978 Collins calculated EM corrections to the nucleon mass with an emphasis on $m_{n}-m_{p}$
The mass only depends on spin-0 operators (q quark, $G^{\mu \nu}$ gluon)

$$
\langle P| m_{q} \bar{q} q|P\rangle, \quad\langle P| G^{\mu \nu} G_{\mu \nu}|P\rangle
$$

	Quark	Gluon
Spin-0	Collins '78	Collins '78

- For $W_{1}\left(0, Q^{2}\right)$ you need also spin-2 operators

$$
\langle P| \bar{q}\left(i D^{\mu} \gamma^{\nu}+i D^{\nu} \gamma^{\mu}-\frac{1}{4} i \not D g^{\mu \nu}\right) q|P\rangle, \quad\langle P| G^{\mu \alpha} G_{\alpha}^{\nu}-\frac{1}{4} G^{\alpha \beta} G_{\alpha \beta} g^{\mu \nu}|P\rangle
$$

- Need to calculate the spin-2 contribution [Hill, GP arXiv:1611.09917]

	Quark	Gluon
Spin-0	Collins '78	Collins '78
Spin-2	Hill, GP '16	Hill, GP '16

- Collins's result is not enough for muonic hydrogen!

Large Q^{2} behavior

- Performing the complete calculation, we found a mistake in Collins spin-0 calculation from 1978...

Large Q^{2} behavior

- Performing the complete calculation, we found a mistake in Collins spin-0 calculation from 1978...
- Collins didn't calculate the spin-0 gluon contribution directly He extracted it from another calculation

Large Q^{2} behavior

- Performing the complete calculation, we found a mistake in Collins spin-0 calculation from 1978...
- Collins didn't calculate the spin-0 gluon contribution directly He extracted it from another calculation
- For three light quark u, d, s

Correct result: $\sum_{q} e_{q}^{2}=\left(\frac{2}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}=\frac{2}{3}$
Collins: $\sum_{q}=3$
Too large by a factor of 4.5...

Large Q^{2} behavior		
	Quark	Gluon
Spin-0	Collins '78	Collins '78
Hill, GP '16		
Spin-2	Hill, GP '16	Hill, GP '16

Large Q^{2} behavior		
	Quark	Gluon
Spin-0	Collins '78	Collins '78

- Even worse, quark spin-0 and gluon spin-0 come with opposite signs After correcting the mistake they largely cancel $W_{1}\left(0, Q^{2}\right)$ is dominated by spin- 2 contribution
- Lesson: It is important to do a full calculation

Large Q^{2} behavior		
	Quark	Gluon
Spin-0	Collins '78	Collins '78

- Even worse, quark spin-0 and gluon spin-0 come with opposite signs After correcting the mistake they largely cancel $W_{1}\left(0, Q^{2}\right)$ is dominated by spin- 2 contribution
- Lesson: It is important to do a full calculation
- Some good news: The mistake has no effect on $m_{n}-m_{p}$ since gluon contribution is the same at lowest order in isospin breaking

Large Q^{2} behavior		
	Quark	Gluon
Spin-0	Collins '78	Collins '78

- Even worse, quark spin-0 and gluon spin-0 come with opposite signs After correcting the mistake they largely cancel $W_{1}\left(0, Q^{2}\right)$ is dominated by spin- 2 contribution
- Lesson: It is important to do a full calculation
- Some good news: The mistake has no effect on $m_{n}-m_{p}$ since gluon contribution is the same at lowest order in isospin breaking
- Flip side: You cannot use $m_{n}-m_{p}$ to constrain muonic hydrogen
- The correct spin 0 result

$$
\begin{gathered}
\frac{Q^{2}}{2 m_{p}^{2}} W_{1}^{(\mathrm{spin}-0)}\left(0, Q^{2}\right)=-2 \sum_{q} e_{q}^{2} f_{q}^{(0)}+\left(\sum_{q} e_{q}^{2}\right) \frac{\alpha_{s}}{12 \pi} \tilde{f}_{g}^{(0)} \\
-\langle N(k)| O_{q}^{(0)}|N(k)\rangle \equiv 2 m_{N}^{2} f_{q, N}^{(0)}, \quad\langle N(k)| O_{g}^{(0)}(\mu)|N(k)\rangle \equiv-2 m_{N}^{2} \tilde{f}_{g, N}^{(0)}(\mu) \\
1=\left(1-\gamma_{m}\right) \sum_{q} f_{q}^{(0)}-\frac{\beta}{2 g} \tilde{f}_{g}^{(0)}
\end{gathered}
$$

Large Q^{2} behavior: Results

- The correct spin 0 result

$$
\begin{gathered}
\frac{Q^{2}}{2 m_{p}^{2}} W_{1}^{(\mathrm{spin}-0)}\left(0, Q^{2}\right)=-2 \sum_{q} e_{q}^{2} f_{q}^{(0)}+\left(\sum_{q} e_{q}^{2}\right) \frac{\alpha_{s}}{12 \pi} \tilde{f}_{g}^{(0)} \\
-\langle N(k)| O_{q}^{(0)}|N(k)\rangle \equiv 2 m_{N}^{2} f_{q, N}^{(0)}, \quad\langle N(k)| O_{g}^{(0)}(\mu)|N(k)\rangle \equiv-2 m_{N}^{2} \tilde{f}_{g, N}^{(0)}(\mu) \\
1=\left(1-\gamma_{m}\right) \sum_{q} f_{q}^{(0)}-\frac{\beta}{2 g} \tilde{f}_{g}^{(0)}
\end{gathered}
$$

- The new spin 2 result

$$
\begin{gathered}
\frac{Q^{2}}{2 m_{p}^{2}} W_{1}^{(\operatorname{spin}-2)}\left(0, Q^{2}\right)=2 \sum_{q} e_{q}^{2} f_{q}^{(2)}(\mu)+\left(\sum_{q} e_{q}^{2}\right) \frac{\alpha_{s}}{4 \pi}\left(-\frac{5}{3}+\frac{4}{3} \log \frac{Q^{2}}{\mu^{2}}\right) f_{g}^{(2)}(\mu) \\
-\langle N(k)| O_{q}^{(2) \mu \nu}(\mu)|N(k)\rangle \equiv 2\left(k^{\mu} k^{\nu}-\frac{g^{\mu \nu}}{4} m_{N}^{2}\right) f_{q, N}^{(2)}(\mu) \\
\langle N(k)| O_{g}^{(2) \mu \nu}(\mu)|N(k)\rangle \equiv 2\left(k^{\mu} k^{\nu}-\frac{g^{\mu \nu}}{4} m_{N}^{2}\right) f_{g, N}^{(2)}(\mu) \\
\quad \sum_{q} f_{q}^{(2)}(\mu)+f_{g}^{(2)}(\mu)=1
\end{gathered}
$$

Large Q^{2} behavior: Total contribution

- The total contribution

- Dashed red: spin 0
- Dashed blue: spin 2
- Vertical stripes: total contribution with perturbative and hadronic errors added in quadrature

Two Photon exchange: small Q^{2} and large Q^{2}

- Using NRQED we have control over low Q^{2}
$W_{1}\left(0, Q^{2}\right)=2 a_{p}\left(2+a_{p}\right)+\frac{Q^{2}}{m_{p}^{2}}\left\{\frac{2 m_{p}^{3} \bar{\beta}}{\alpha}-a_{p}-\frac{2}{3}\left[\left(1+a_{p}\right)^{2} m_{p}^{2}\left(r_{M}^{p}\right)^{2}-m_{p}^{2}\left(r_{E}^{p}\right)^{2}\right]\right\}+\mathcal{O}\left(Q^{4}\right)$
- Using OPE we now have control over the high Q^{2}
$\frac{Q^{2}}{2 m_{p}^{2}} W_{1}^{(\operatorname{spin}-0)}\left(0, Q^{2}\right)=-2 \sum_{q} e_{q}^{2} f_{q}^{(0)}+\left(\sum_{q} e_{q}^{2}\right) \frac{\alpha_{s}}{12 \pi} \tilde{f}_{g}^{(0)}$
$\frac{Q^{2}}{2 m_{p}^{2}} W_{1}^{(\text {spin-2) }}\left(0, Q^{2}\right)=2 \sum_{q} e_{q}^{2} f_{q}^{(2)}(\mu)+\left(\sum_{q} e_{q}^{2}\right) \frac{\alpha_{s}}{4 \pi}\left(-\frac{5}{3}+\frac{4}{3} \log \frac{Q^{2}}{\mu^{2}}\right) f_{g}^{(2)}(\mu)$
- The problem, like the joke, is how to make a whole fish from a head and a tail...
- Before this work we had only the low Q^{2} knowing the large Q^{2} allows to connect the dots

Two Photon Exchange: Modeling

- "Aggressive" modeling: use OPE for $Q^{2} \geq 1 \mathrm{GeV}^{2}$
- Model unknown Q^{4} : add $\Delta_{L}\left(Q^{2}\right)= \pm Q^{2} / \Lambda_{L}^{2}$ with $\Lambda_{L} \approx 500 \mathrm{MeV}$
- Model unknown $1 / Q^{4}$: add $\Delta_{H}\left(Q^{2}\right)= \pm \Lambda_{H}^{2} / Q^{2}$ with $\Lambda_{H} \approx 500 \mathrm{MeV}$

Two Photon Exchange: Modeling

- "Aggressive" modeling: use OPE for $Q^{2} \geq 1 \mathrm{GeV}^{2}$
- Model unknown Q^{4} : add $\Delta_{L}\left(Q^{2}\right)= \pm Q^{2} / \Lambda_{L}^{2}$ with $\Lambda_{L} \approx 500 \mathrm{MeV}$
- Model unknown $1 / Q^{4}$: add $\Delta_{H}\left(Q^{2}\right)= \pm \Lambda_{H}^{2} / Q^{2}$ with $\Lambda_{H} \approx 500 \mathrm{MeV}$
- How to connect the curves?

Two Photon Exchange: Modeling

- "Aggressive" modeling: use OPE for $Q^{2} \geq 1 \mathrm{GeV}^{2}$
- Model unknown Q^{4} : add $\Delta_{L}\left(Q^{2}\right)= \pm Q^{2} / \Lambda_{L}^{2}$ with $\Lambda_{L} \approx 500 \mathrm{MeV}$
- Model unknown $1 / Q^{4}$: add $\Delta_{H}\left(Q^{2}\right)= \pm \Lambda_{H}^{2} / Q^{2}$ with $\Lambda_{H} \approx 500 \mathrm{MeV}$
- Interpolating:

Two Photon Exchange: Modeling

- "Aggressive" modeling: use OPE for $Q^{2} \geq 1 \mathrm{GeV}^{2}$
- Model unknown Q^{4} : add $\Delta_{L}\left(Q^{2}\right)= \pm Q^{2} / \Lambda_{L}^{2}$ with $\Lambda_{L} \approx 500 \mathrm{MeV}$
- Model unknown $1 / Q^{4}$: add $\Delta_{H}\left(Q^{2}\right)= \pm \Lambda_{H}^{2} / Q^{2}$ with $\Lambda_{H} \approx 500 \mathrm{MeV}$
- Interpolating:

Two Photon Exchange: Modeling

- "Aggressive" modeling: use OPE for $Q^{2} \geq 1 \mathrm{GeV}^{2}$
- Model unknown Q^{4} : add $\Delta_{L}\left(Q^{2}\right)= \pm Q^{2} / \Lambda_{L}^{2}$ with $\Lambda_{L} \approx 500 \mathrm{MeV}$
- Model unknown $1 / Q^{4}$: add $\Delta_{H}\left(Q^{2}\right)= \pm \Lambda_{H}^{2} / Q^{2}$ with $\Lambda_{H} \approx 500 \mathrm{MeV}$
- Interpolating:

- Energy contribution: $\delta E(2 S)^{W_{1}\left(0, Q^{2}\right)} \in[-0.046 \mathrm{meV},-0.021 \mathrm{meV}]$ To explain the puzzle need this to be $\sim-0.3 \mathrm{meV}$
- Caveats: OPE might be only valid for larger Q^{2} $W_{1}\left(0, Q^{2}\right)$ might be different than the interpolated lines

Experimental test

- How to test? New experiment: $\mu-p$ scattering MUSE (MUon proton Scattering Experiment) at PSI [R. Gilman et al. (MUSE Collaboration), arXiv:1303.2160]

- Need to connect muon-proton scattering and muonic hydrogen can use a new effective field theory: QED-NRQED [Hill, Lee, GP, Mikhail P. Solon, PRD 87053017 (2013)]
[Steven P. Dye, Matthew Gonderinger, GP, PRD 94013006 (2016)]
[Steven P. Dye, Matthew Gonderinger, GP, in progress]
- See Steven P. Dye talk tomorrow Wednesday 11:50 AM in Precision Electroweak Physics session

Conclusions

Conclusions

- Proton radius puzzle: $>5 \sigma$ discrepancy between
- r_{E}^{p} from muonic hydrogen
- r_{E}^{p} from hydrogen and $e-p$ scattering
- Recent muonic deuterium results find similar discrepancies [Pohl et al. Science 353, 669 (2016)]
- After 7 years the origin is still not clear

1) Is it a problem with the electronic extraction?
2) Is it a hadronic uncertainty?
3) is it new physics?

- Motivates a reevaluation of our understanding of the proton

Conclusions

- Discussed three topics:

Conclusions

- Discussed three topics:

1) Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value

Conclusions

- Discussed three topics:

1) Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
2) The first full and correct evaluation of large Q^{2} behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects

Conclusions

- Discussed three topics:

1) Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
2) The first full and correct evaluation of large Q^{2} behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects
3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED

Conclusions

- Discussed three topics:

1) Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
2) The first full and correct evaluation of large Q^{2} behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects
3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED

- Much more work to do!
- Thank you

Backup: Connecting muon-proton scattering and muonic hydrogen

MUSE

- Muonic hydrogen:

Muon momentum $\sim m_{\mu} c \alpha \sim 1 \mathrm{MeV}$
Both proton and muon non-relativistic

- MUSE:

Muon momentum $\sim m_{\mu} \sim 100 \mathrm{MeV}$
Muon is relativistic, proton is still non-relativistic

- QED-NRQED effective theory:
- Use QED for muon
- Use NRQED for proton $m_{\mu} / m_{p} \sim 0.1$ as expansion parameter
- A new effective field theory suggested in [Hill, Lee, GP, Mikhail P. Solon, PRD 87053017 (2013)]

QED-NRQED Effective Theory

- Example: TPE at the lowest order in $1 / m_{p}$ [Steven P. Dye, Matthew Gonderinger, GP, PRD 94013006 (2016)]
- Consider muon-proton scattering $\mu(p)+p(k) \rightarrow \mu\left(p^{\prime}\right)+p\left(k^{\prime}\right)$
- At lowest order in $1 / m_{p}: p^{0}=p^{0} \Rightarrow \delta\left(p^{0}-p^{\prime 0}\right)$
- At the proton rest frame $k=\left(m_{p}, \overrightarrow{0}\right) \Rightarrow k^{0}=0$ in NRQED
- NRQED propagator: $\frac{1}{10-\overrightarrow{l^{2}} / 2 M+i \epsilon}$

$$
\frac{1}{p^{0}-L^{0}+i \epsilon}+\frac{1}{L^{0}-p^{0}+i \epsilon} \Rightarrow \delta\left(L^{0}-p^{0}\right)
$$

- In total

$$
\delta\left(p^{0}-p^{\prime 0}\right) \delta\left(L^{0}-p^{0}\right)=\delta\left(L^{0}-p^{0}\right) \delta\left(L^{0}-p^{\prime 0}\right)
$$

QED-NRQED Effective Theory

- The amplitude

$$
\begin{aligned}
& i \mathcal{M}(2 \pi)^{4} \delta^{4}\left(k+p-k^{\prime}-p^{\prime}\right)=Z^{2} e^{4} \int \frac{d^{4} L}{(2 \pi)^{4}} \frac{1}{\left.(L-p)^{2} L-p^{\prime}\right)^{2}} \\
\times & \bar{u}\left(p^{\prime}\right) \gamma^{0} \frac{i}{\not \angle-m} \gamma^{0} u(p) \chi^{\dagger} \chi(2 \pi) \delta\left(L^{0}-p^{0}\right)(2 \pi) \delta\left(L^{0}-p^{\prime 0}\right) \\
\times & (2 \pi)^{3} \delta^{4}\left(\vec{p}-\vec{p}^{\prime}-\vec{k}^{\prime}\right)
\end{aligned}
$$

- The cross section

$$
\frac{d \sigma}{d \Omega}=\frac{Z^{2} \alpha^{2} 4 E^{2}\left(1-v^{2} \sin ^{2} \frac{\theta}{2}\right)}{\vec{q}^{4}}\left[1+\frac{Z \alpha \pi v \sin \frac{\theta}{2}\left(1-\sin \frac{\theta}{2}\right)}{1-v^{2} \sin ^{2} \theta}\right]
$$

$Z=1, E=$ muon energy, $v=|\vec{p}| / E, q=p^{\prime}-p, \theta$ scattering angle

QED-NRQED Effective Theory

- QED-NRQED result

$$
\frac{d \sigma}{d \Omega}=\frac{Z^{2} \alpha^{2} 4 E^{2}\left(1-v^{2} \sin ^{2} \frac{\theta}{2}\right)}{\vec{q}^{4}}\left[1+\frac{Z \alpha \pi v \sin \frac{\theta}{2}\left(1-\sin \frac{\theta}{2}\right)}{1-v^{2} \sin ^{2} \theta}\right]
$$

- Same result as scattering relativistic lepton off static $1 / r$ potential [Dalitz, Proc. Roy. Soc. Lond. 206, 509 (1951)] reproduced in [Itzykson, Zuber, "Quantum Field Theory"]
- Same result as $m_{p} \rightarrow \infty$ of "point particle proton" QED scattering (For $m_{p} \rightarrow \infty$ only proton charge is relevant)

QED-NRQED Effective Theory beyond $m_{p} \rightarrow \infty$ limit

- QED-NRQED allows to calculate $1 / m_{p}$ corrections
- Example: one photon exchange $\mu+p \rightarrow \mu+p$: QED-NRQED $=1 / m_{p}$ expansion of form factors [Steven P. Dye, Matthew Gonderinger, GP, PRD 94013006 (2016)]

Connecting muon-proton scattering to muonic hydrogen

- Matching
QED, QCD
$G_{E, M}$, Structure func., $W_{1}\left(0, Q^{2}\right)$
Scale: $m_{p} \sim 1 \mathrm{GeV}$

QED-NRQED: MUSE

$$
r_{E}^{p}, \bar{\mu} \gamma^{0} \mu \psi_{p}^{\dagger} \psi_{p}
$$

Scale: $m_{\mu} \sim 0.1 \mathrm{GeV}$

NRQED-NRQED: muonic H

$$
r_{E}^{p}, \psi_{\mu}^{\dagger} \psi_{\mu} \psi_{p}^{\dagger} \psi_{p}
$$

- Need to match QED-NRQED contact interaction, e.g. $\bar{\mu} \gamma^{0} \mu \psi_{p}^{\dagger} \psi_{p}$ to NRQED-NRQED contact interaction, e.g. $\psi_{\mu}^{\dagger} \psi_{\mu} \psi_{p}^{\dagger} \psi_{p}$
[Dye, Gonderinger, GP in progress]

Connecting muon-proton scattering to muonic hydrogen

- To do list:

1) Relate QED-NRQED contact interactions to NRQED contact interactions and $W_{1}\left(0, Q^{2}\right)$
2) Calculate $d \sigma(\mu+p \rightarrow \mu+p)$ and asymmetry in terms of r_{E}^{p} and d_{2}
3) Direct relation between $\mu-p$ scattering and muonic H
