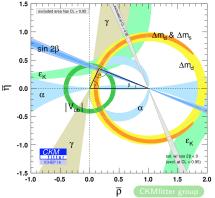
CP violation measurements in b hadrons at LHCb

María Vieites Díaz Universidade de Santiago de Compostela On behalf of the LHCb collaboration

Meeting of the APS Division of Particles and Fields

August $4^{\rm th}$, 2017

Charge-Parity Violation: why the interest?


The Standard Model (SM) of particle physics despite being very successful in its predictions fails to explain matter anti-matter differences in our universe.

New sources of these asymmetries (CPV) are therefore **expected** in any satisfactory SM extension!

Flavour transitions in the quark sector are parametrised by the CKM matrix

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ \hline A\lambda^3(1 - \rho) - \langle \eta \rangle & -A\lambda^2 & 1 \end{pmatrix}$$

CKM matrix: unitary, 3×3 matrix describing quark mixing (3 angles, one phase). (A, λ , ρ , η) are not predicted by the SM. They need to be measured!

These parameters are over constrained in the SM \rightarrow great scenario to search for incompatibilities and small deviations due to New Physics (NP) effects

 $Why \ b \ hadrons?$ related unitary triangles are less squeezed hence expect larger sensitivity to any CP violation effect.

S

CPV phenomenology

How: measure interfering amplitudes with different CKM phases

Mixing

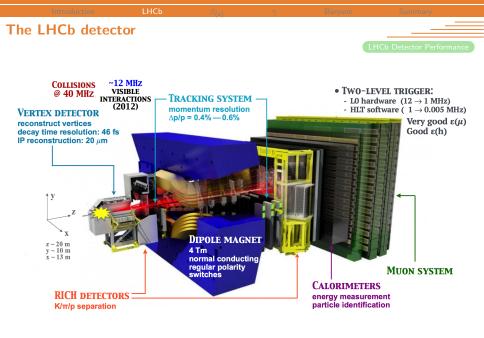
- $egin{aligned} |X_{L,H}
 angle &= q \, |X^0
 angle \pm p \, |\overline{X}^0
 angle \ & \diamond \, |q/p|
 eq 1 \end{aligned}$
 - ◊ Neutral meson mixing: $\mathcal{P}(X \to \overline{X}) \neq \mathcal{P}(\overline{X} \to X)$
 ◊ Ex.: $a_{sl}^{s,d} = \frac{R(\overline{B}^0 \to \overline{\ell}X) - R(B^0 \to \ell X)}{R(\overline{B}^0 \to \overline{\ell}X) + R(B^0 \to \ell X)}$

Decay

$$\mathcal{A}(X \to f) \neq \mathcal{A}(\overline{X} \to \overline{f})$$

- ♦ Amplitudes for CP conjugates differ
- ◊ Possible also for charged hadrons
- Only option for baryons (baryon number conservation)

 $\phi_{
m mix}$


 $\phi_{\rm dec}$

Interference Mixing and Decay

- ◊ Interference of direct decay and decay after mixing
- $\label{eq:partial} \begin{array}{l} \diamond \quad \mbox{Partial decay widths are sensitive to} \\ \phi_q = \phi_{\textit{mix}} 2\phi_{\textit{dec}} \end{array}$
- ◊ Decay-time dependent CP asymmetry:

$$a_{CP} = \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)} = \frac{C_f \cos(\Delta M t) - S_f \sin(\Delta M t)}{\cosh(\frac{\Delta T}{2}) + A_f^{\Delta T} \sinh(\frac{\Delta T}{2})}$$

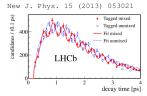
$$\diamond \quad \textit{Ex.:} \quad B^0 \to J/\Psi K_s^0$$

on

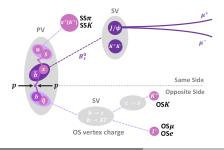
LHCb

Baryons

Experimental challenges


To measure CPV an experiment needs:

Excellent vertexing:

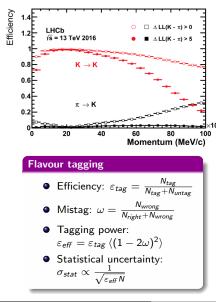

to separate primary from secondary vertexes to resolve fast oscillations

• Very good PID performance:

to distinguish between topologically identical events to tag the initial flavour content

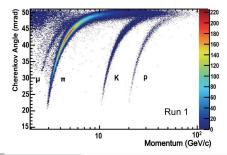
- Very large sample sizes to be sensitive to tiny variations
- Control over known CP asymmetries/effects

To help with these, the LHCb:


- runs at lower instantaneous luminosity than ATLAS or CMS
- levels the luminosity, making trigger conditions constant throughout the runs
- takes data with different magnet polarities

duction

LHCb


Baryons

A word on PID and tagging

Particle Identification

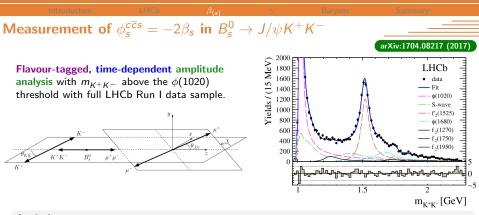
- π/K separation: $\varepsilon_K \sim 90\%, \pi \rightarrow K \text{ misID} \sim 5\%$
- π/μ separation: $\varepsilon_{\mu} \sim 97\%, \pi \rightarrow \mu \text{ misID} \sim 1 - 3\%$
- Calibrated via data driven methods
- Good control and understanding of the PID performance is critical to our analyses.

 \rightarrow Accessible from the interference between mixing and decay

Standard Model predictions

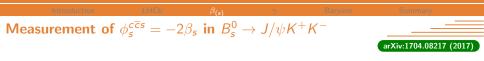
$$\begin{array}{l} B_s^0 \text{ system: } \phi_s^{c\overline{c}s} \equiv -2arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = 0.0365^{+0.0013}_{-0.0012} \text{ rad} \\ B^0 \text{ system: } \phi_d^{c\overline{c}s} \equiv -2arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) = 0.771^{+0.017}_{-0.041} \text{ rad} \end{array}$$

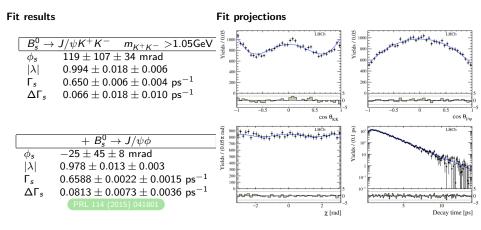
 \rightarrow Golden modes provide exact match to the CKM angle:


$$B_s^0 o J/\psi K^+ K^- (\phi_s = -2\beta_s)$$
 and $B^0 o J/\psi K_s^0 (\phi_d = 2\beta)$

Latest published results:

Decay	Result	Reference
$\begin{array}{c} B^0 \rightarrow J/\psi \pi^+ \pi^- \\ B^0_{\xi} \rightarrow D^+_{g} D^{\xi} \\ B^0_{\xi} \rightarrow J/\psi K^+ K^- \\ B^0_{\xi} \rightarrow J/\psi K^+ D^- \end{array}$	$+0.070 \pm 0.068 \pm 0.008$	PLB B736 186 (2014)
$B_s^0 \rightarrow D_s^+ D_s^-$	$+0.02\pm0.17\pm0.02$	PRL113 211801 (2014)
$B_s^0 \rightarrow J/\psi K^+ K^-$	$-0.058 \pm 0.049 \pm 0.006$	PRL114 041802 (2015)
$B^0 \rightarrow D^+ D^-$	$\Delta \phi = -0.16^{+0.19}_{-0.21}$	PRL 117 261801(2016)
$B_s^0 o \psi(2S)\phi$	$+0.23^{+0.29}_{-0.28}\pm0.02$	PLB B762, 252-262 (2016)
$\mathbf{B_s^0} \to \mathbf{J}/\psi \mathbf{K^+K^-} \ (m_{K^+K^-} > m_{\phi(1020)})$	$+0.119\pm\!0.107{\pm}0.034$	arXiv:1704.08217 (2017)


Ongoing new analyses and updates:


•
$$B_s^0 \to J/\psi(\to e^+e^-)\phi$$
 with Run I
• $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ with Run I
• $B_s^0 \to J/\psi K^+K^-, B_s^0 \to J/\psi \pi^+\pi^-$ Run I

Analysis strategy

- Selection using multivariate analysis, background subtraction via sWeights in $m(J/\psi K^+K^-)$ and multi-dimensional fit to the decay time, $m_{K^+K^-}$ and the helicity angles.
- Reconstruction and selection efficiency vs decay time are measured on data (control channel: B⁰ → J/ψK^{*0}(→ K⁺π⁻))
- Dominant systematics arise from resonance modelling and background subtraction
- First time that ϕ_s is measured in final states dominated by a tensor

Combining these also with the previous LHCb measurements using the $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ yields $\phi_s = 1 \pm 37$ mrad

DPF 2017

I HCb

 $B^0_* \rightarrow \pi^*\pi^*$

 $B^0 \rightarrow \pi^* \pi'$

 $B^0 \rightarrow K^*\pi^*$

| B⁰→ π*π'X

Comb. bka

m ... [GeV/c2]

TD CPV in $B^0_{(s)} \rightarrow h^+ h^-$

Motivation

 \rightarrow Two battle fronts.

- Extremely rare $B^0 \rightarrow K^+K^-$ and $B_{c}^{0} \rightarrow \pi^{+}\pi^{-}$
- Sizeable sample for their high stats partners!

 \rightarrow Branching ratios are measured for the rare modes

 \rightarrow TD CPV analysis can be done with the high stats. samples

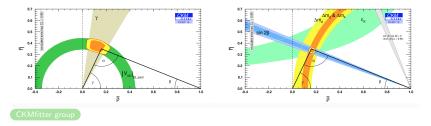
→Assuming U-spin symmetry, flavour tagged TD CPV analysis can constrain γ and ϕ_s

Most precise single measurement in ${
m B}^0 o \pi^+\pi^-$

Unique measurement performed of $B^0_s \to K^+K^-$

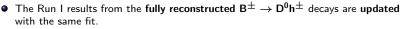
Better precision expected with the inclusion of the SS taggers!

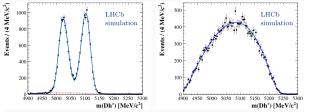
LHCb-CONF-2016-018 LHCb B⁰→ K^{*}K 300 B⁰_a→ K*K B⁰→ K*= 200 A⁰→ pK B⁰→ K*KX m_{K'K} [GeV/c²] e 0.15 LHCb Preliminary LHCb Preliminary $B^0 \rightarrow \pi^+ \pi$ $B^0 \rightarrow K^+K^-$ Raw asym 0.1 a 0.05 -0.05 -0.2 -0.1 -0.3 -0.15 -0.2 0.05 0.1 0.15 0.2 0. (t-t_)mod(2π/Δm_) [ps] $C_{\pi\pi}$ $= -0.24 \pm 0.07$ (stat) ± 0.01 (svst) $= -0.68 \pm 0.06$ (stat) ± 0.01 (syst) $S_{\pi\pi}$ Скк $= 0.24 \pm 0.06$ (stat) ± 0.02 (syst) S_{KK} $= 0.22 \pm 0.06$ (stat) ± 0.02 (syst)


 $= -0.75 \pm 0.07$ (stat) ± 0.11 (syst)

DPF 2017

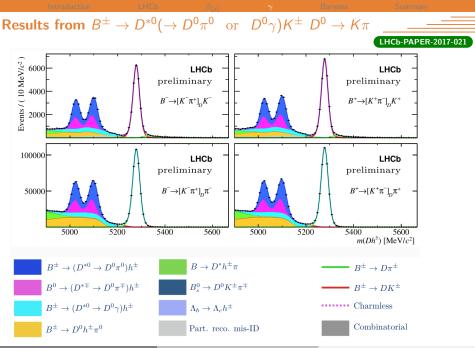
 $A^{\Delta\Gamma}_{\kappa\kappa}$


Status of γ measurements


- Least well measured angle of the CKM unitarity triangle
- No top quark coupling in its definition: $\gamma = \arg \left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$ (theoretically clean)
- Single measurements aren't precise enough to challenge the SM \rightarrow big effort in producing a combination of results from many (GLW+ADS) channels
- Direct determination: $\gamma = (72.1^{+5.4}_{-5.8})^{\circ}$ vs Indirect: $\gamma = (65.3^{+1.0}_{-2.5})^{\circ}$

Latest addition: $B^{\pm} \rightarrow D^{*0} (\rightarrow D^0 \pi^0 \text{ or } D^0 \gamma) K^{\pm}$

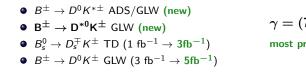
- Theoretically similar to the very well studied $B^{\pm} \rightarrow D^0 h^{\pm}$ PLB 760 (2016)
- Experimental challenge of π^0/γ reconstruction at LHCb overcame \rightarrow these particles are ignored in the analysis
- Selection is then identical to that from $B^{\pm}
 ightarrow D^0 h^{\pm}$
- Final fit is performed simultaneously over 12 (B||B × (K||π) × 3 − D daughters) disjoint samples and accesses 19 CPV observables
- These are built from different (double) ratios of partial decay widths (GLW) and phase differences for both the fully reconstructed and the *D*^{*0} modes

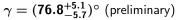


The shape of the $m(D^0h^{\pm})$ distribution allows to distinguish the π^0 and the γ modes.

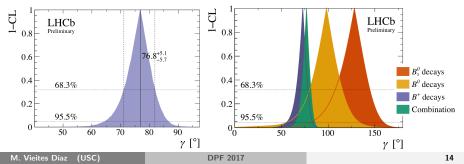
LHCb-PAPER-2017-02

DPF 2017

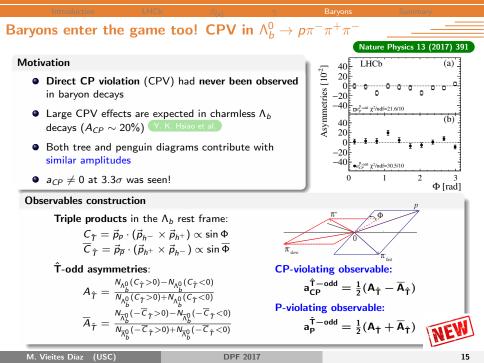

Latest LHCb γ combination


 \rightarrow New modes added since last publication:

 \to Obtained from the combination of several time-integrated analyses and the time-dependent $B^0_s \to D^-_s K^\pm$


 \rightarrow Follows the same strategy as the previous LHCb combination: $\gamma = (72.2^{+6.8}_{-7.3})^{\circ}$

JHEP 12 (2016) 087



most precise measurement to date!

LHCb-CONF-2017-004

Introduction	LHCb		Summary	
Summary and cor	nclusions			

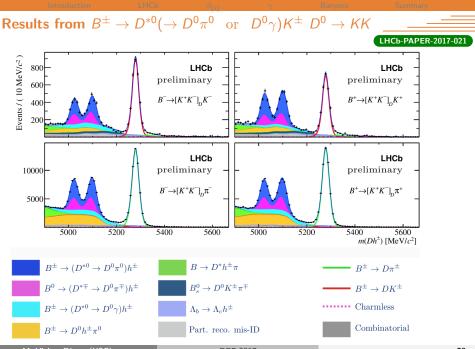
- \rightarrow Results found so far are compatible with SM expectations but CPV knowledge remains having several grey areas
- \rightarrow Many of them are within the LHCb physics-case!
- → With the statistics achieved by LHCb during the Run I & II, many new analyses have become feasible and high precision measurements are being performed. Some expectations on the precisions to achieve by the end of Run II would be:
 - $\diamond~$ 4 $^\circ$ for γ
 - $\diamond~\sim 0.8^\circ$ in m eta
 - $\diamond~<$ 20 mrad for $\phi_{
 m s}$

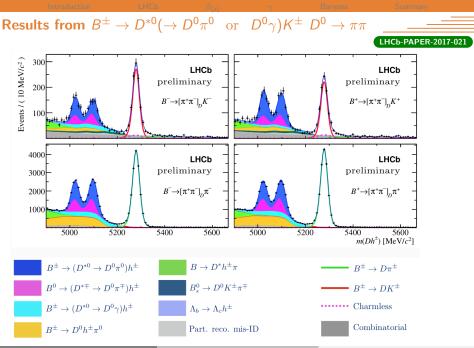
\rightarrow Stay tuned for many interesting new results!

Thank you for your attention!

...questions

DPF 2017


Backup slides


Systematics in the TD CPV analysis of $B^0_{(s)} \rightarrow h^+ h^-$

Parameter	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$C_{K^+K^-}$	$S_{K^+K^-}$	$A_{K^+K^-}^{\Delta\Gamma}$
Time acceptance	0.001	0.001	0.003	0.003	0.093
Time resolution calibration	0.000	0.000	0.016	0.017	0.012
Time resolution model	0.000	0.000	0.007	0.008	0.000
Time error distribution	0.002	0.002	0.002	0.002	0.019
Input parameters: $\Gamma_{d,s}$, $\Delta\Gamma_{d,s}$, $\Delta m_{d,s}$	0.001	0.001	0.001	0.003	0.046
Tagging calibration	0.002	0.003	0.002	0.003	0.000
Cross-feed bkg. time model	0.003	0.002	0.001	0.001	0.021
Comb. and 3-body bkg. time model	0.001	0.001	0.000	0.000	0.001
Mass model	0.003	0.003	0.006	0.005	0.010
Total	0.005	0.005	0.019	0.020	0.109

DPF 2017

LHCb-CONF-2016-018

Binning scł	nemes for the	ə $\Lambda^0_b o p\pi$	$\pi\pi\pi$ measurements	
		~	Nature Phy	ysics 13 (2017) 391
Scheme A	$m_{p\pi^+}$	$m_{p\pi_{slow}}$	$m_{\pi^+\pi^{slow}}, m_{\pi^+\pi^{fast}}$	Φ
Region	(GeV/c^2)	(GeV/c^2)	$(\operatorname{GeV}/c^2, \operatorname{GeV}/c^2)$	
1	(1.00, 1.23)		<u>.</u>	$(0, \frac{\pi}{2})$
2	(1.00, 1.23)			$\left(\frac{\pi}{2}, \pi\right)$
3	(1.23, 1.35)			$(0, \frac{\pi}{2})$
4	(1.23, 1.35)			$\left(\frac{\pi}{2}, \pi\right)$
5	(1.35, 5.40)	(0.90, 2.00)	$(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(\bar{0}, \frac{\pi}{2})$
6	(1.35, 5.40)	(0.90, 2.00)		$(\frac{\pi}{2},\pi)$
7	(1.35, 5.40)	(0.90, 2.00)	$!(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(0, \frac{\pi}{2})$
8	(1.35, 5.40)	(0.90, 2.00)	$!(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(\frac{\pi}{2},\pi)$
9	(1.35, 5.40)	(2.00, 4.00)	$(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(0, \frac{\pi}{2})$
10	(1.35, 5.40)	(2.00, 4.00)	$(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(\frac{\pi}{2},\pi)$
11	(1.35, 5.40)	(2.00, 4.00)		$(0, \frac{\pi}{2})$
12	(1.35, 5.40)	(2.00, 4.00)	$!(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(\frac{\pi}{2},\pi)$
Scheme B				
Region				
i	(i = 1, 2,, 10)			$\left(\frac{i-1}{10}\pi, \frac{i}{10}\pi\right)$