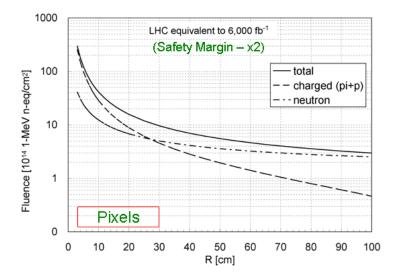
3D CVD Diamond Sensor Development

Bin Gui

on behalf of the **RD42** collaboration

MEETING OF THE AMERICAN PHYSICAL SOCIETY DIVISION OF PARTICLES AND FIELDS

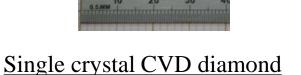

CERN

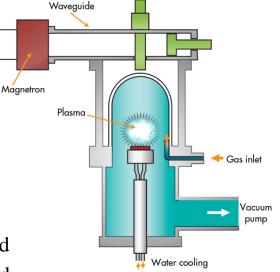
Motivation

- The inner detectors of high energy physics experiments withstand large radiation doses! \geq
 - > Innermost layers: highest radiation damage (will be 100MHz/cm² to 200MHz/cm²)
 - Current detector is designed to survive 12 month in High-Luminosity LHC (HL-LHC)
 - R&D for more radiation hard detector designs and/or materials

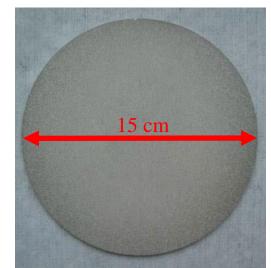
Chemical Vapor Deposition (CVD) diamond as sensor material has been used in almost every experiment, since its

- **Radiation hardness** no frequent replacements
- > Low dielectric constant low capacitance
- Low leakage current low readout noise
- ➢ Good insulating properties − large active area
- **Room temperature operation no cooling necessary**
- Fast signal collection time –no ballistic deficit
- Smaller signal than Silicon larger energy to create eh-pair
- **RD42 collaboration** is investigating CVD diamond as material for tracking in extreme radiation environments. Various detector designs have been used in the study of signal independence/dependence on incident particle flux
 - \triangleright **Pad** \rightarrow full diamond as single cell readout
 - **Pixel** \rightarrow diamond sensor on pixel chips
 - > 3D \rightarrow strip/pixel detector with clever design to reduce drift distance




CVD Diamond Types

T H E OHIO STATE UNIVERSITY


- Diamond produced in an artificial process. \succ
 - > Diamonds are "synthesized" from a plama
 - > The diamond "copies" the substrate
- Investigation of two different diamond types \succ
 - > Polycrystalline Chemical Vapor Deposition **pCVD** diamond
 - Single Crystal Chemical Vapor Deposition svCVD diamond

4 cm

CERN

Polycrystalline CVD diamond wafer

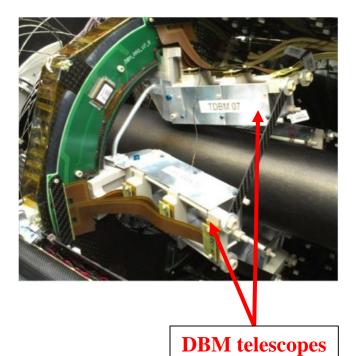
pCVD signals smaller than scCVD in planar configuration \geq

3

CERN

Diamond Detectors in LHC

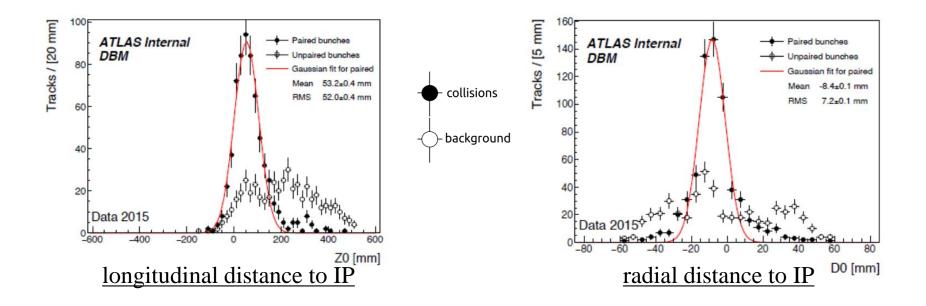
Beam condition/loss monitors


OHIO STATE UNIVERSITY

> Essential in all modern collider experiments

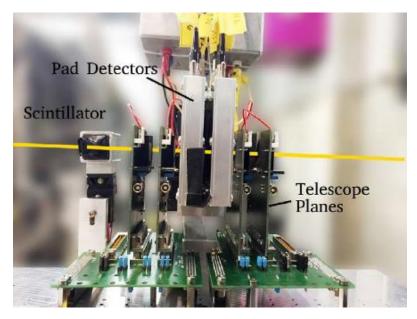
ATLAS Diamond Beam Monitor (DBM)

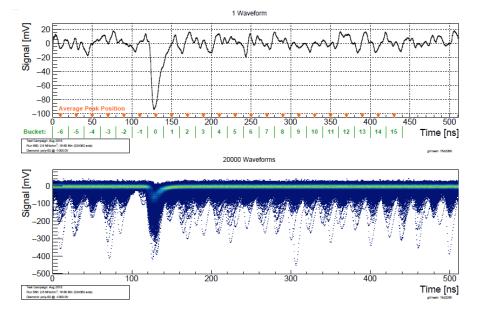
- Diamond pixel detectors in ATLAS (tracking)
- > 45 pCVD diamonds modules with FE-I4b chips
- Modules assembled at CERN
- Installed during LS1
- 8 telescopes (2 Si & 6 Diamond) symmetric around ATLAS IP
 - ▶ 854mm < |z| < 1092mm</p>
 - ▶ 3.2 < |η| < 3.5
- > ATLAS DBM integrated in ATLAS readout in 2015.
- Future HL-LHC trackers
 - 3D diamond detectors
- Future beam condition/luminosity monitor
 Multi-pad design BCM'



ATLAS Diamond Beam Monitor

> Use hits from the 3 modules to reconstruct tracks

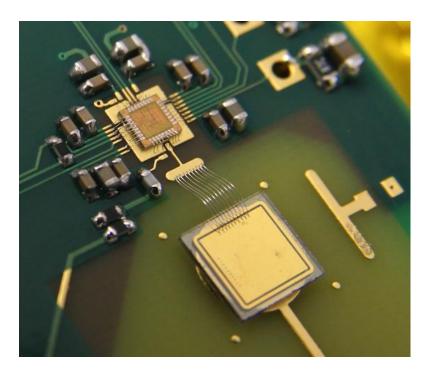



- Plots with initial alignment
- > Clear discrimination between **IP** and **background** particles
- > 2 electrical incidents in 2015 caused loss of modules (both Si and Diamond)
 - Successful re-commissioning of surviving modules
- > Diamond and Si modules now part of ATLAS data taking

Rate Studies in pCVD Diamond

- Paul Scherrer Institute (PSI) \succ
 - > 260MeV π⁺
 - Rate up to 20MHz/cm²
 - > 50µm position resolution
- Pad detectors tested in **ETH-Z telescope** (CMS pixel, $100\mu m \times 150\mu m$)
- Electronics is pre-prototype for HL-LHC BCM/BLM: luminosity analog board
- 4 tracking planes the inner 2 planes provide masked trigger
- Scintillator for **precise** ~ **1ns** event time

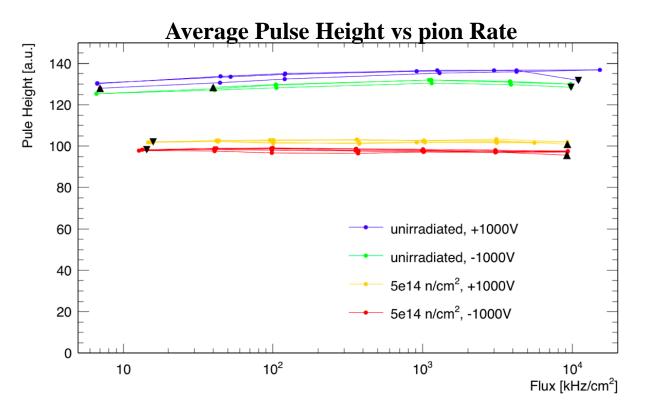
CERN


test setup

19.8ns bunch spacing clearly visible

Pad Detectors

ERN

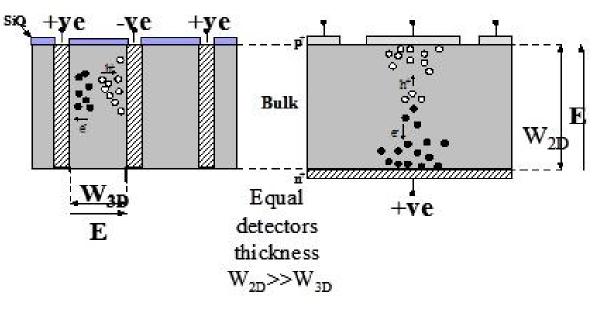

fast amplifier box

Diamond (bottom right) and fast amp (top left)

- Diamonds in custom built amplifier boxes
- Cleaning, photo-lithography and Cr-Au metallization
- > Low noise, fast amplifier with O(5ns) rise time
- > Pre-prototype for HL-LHC BCM/BLM

Rate Studies in pCVD Pad Detectors

- > Pulse rate was measured at several rate points between 2kHz/cm² and 10MHz/cm²
 - > scanned up and down up to 4 times to check repeatability
- > No absolute pulse height and noise calibration yet
- > No rate dependence observed in pCVD up to 10-20MHz/cm²
- ▶ Now extending dose to 10¹⁶n/cm²



3D Device in CVD Diamond

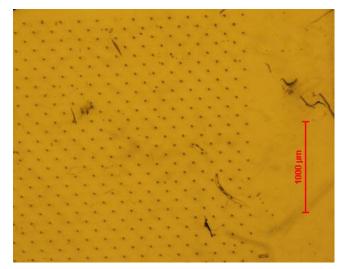
- After long radiation fluence all detectors are trap limited. \geq
 - > Mean free path $< 75 \mu m$

T H E OHIO STATE UNIVERSITY

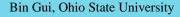
- > Would like to keep drift distances smaller than MFP.
 - > Thin planar detector, $W_{2D} \sim 50 \mu m$
 - > 3D detector, W_{3D} ~37µm (for 50µm × 50µm cells)

- Incorporate bias and readout electrodes into detector's bulk
 - > Same detector thickness (same amount of charge induced by an ionizing particle)
 - Shorter drift distance in 3D detectors
 - Reduced probability of charge trapping in radiation damaged and/or pCVD detector

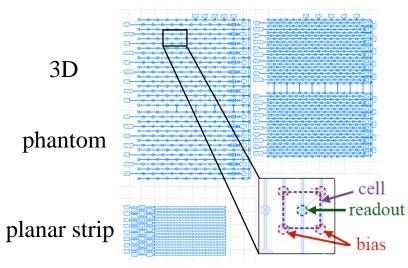
9

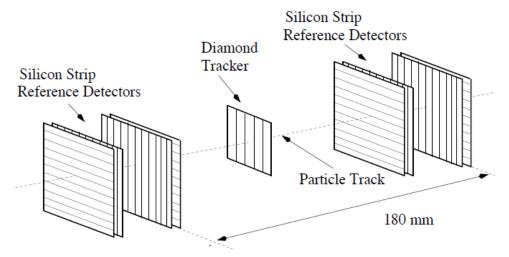

3D Detector Fabrication

- Femtosecond laser converts insulating diamond into a resistive mixture of various carbon phases: DLC, amorphous carbon, graphite, etc
- Spatial Light Modulation (SLM) corrects aberration in diamond, the column yield increased from 90% to >99%

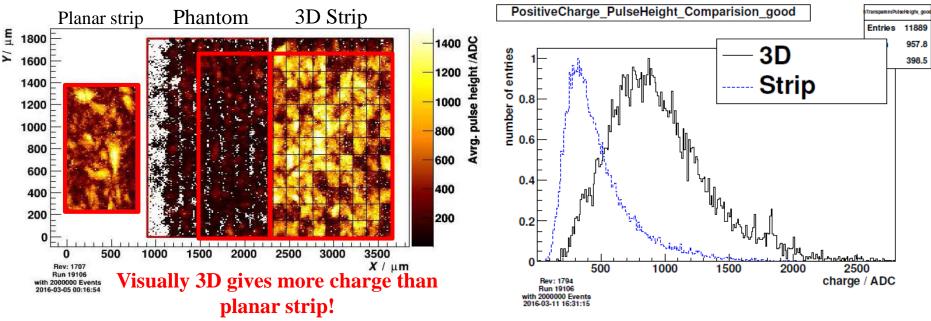


columns made with 800nm femtosecond laser initial cells $150\mu m \times 150\mu m$, columns 6 μm diameter


Laser drilled holes, pCVD samples


11

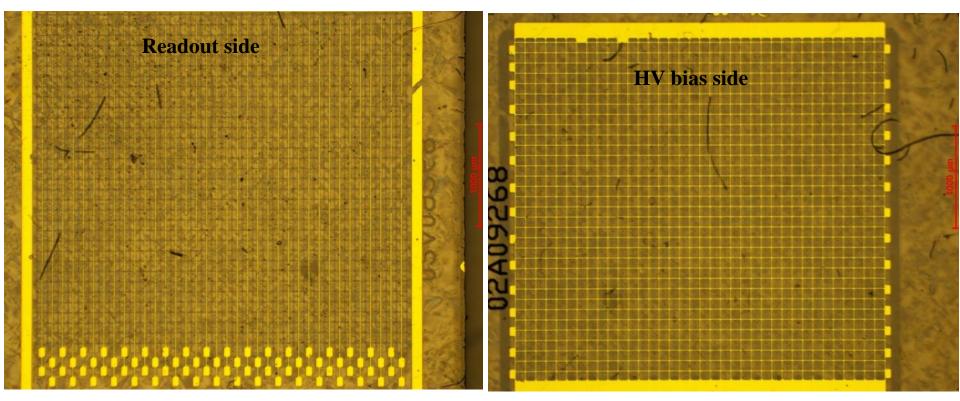
3D Detector in Polycrystalline CVD Diamond


- Simultaneously readout all 3 devices
 - > **3D**: bias and readout contacts on the same side ($150\mu m \times 150\mu m$ cell size)
 - > Phantom: same metal pattern as 3D strip but without graphitic columns
 - > Planar strip: bias contact on backside
- > Tested at CERN with 120GeV protons
- Beam telescope reconstructs particle tracks and predicts their impact position in the device under test with < 5µm precision
- Low noise VA2 readout

CERN

Planar Strip Detector VS 3D Detector

- Measured column efficiency: 92%
 - > Broken readout columns result in <u>cell</u> with low signal
 - Broken bias columns result in region with lower signal
- Measured **noise**: ~proportional to capacitance >
- Measured **signal**: read out as ganged cells \geq



- Measured signal (diamond thickness 500µm) \succ
 - Planar strip detector ave charge : $6900e \text{ or } ccd=192\mu m$ \succ
 - 3D ave charge: 13500e or ccd_{eq} =350-375µm
- For the first time collect > 75% of charge in pCVD!

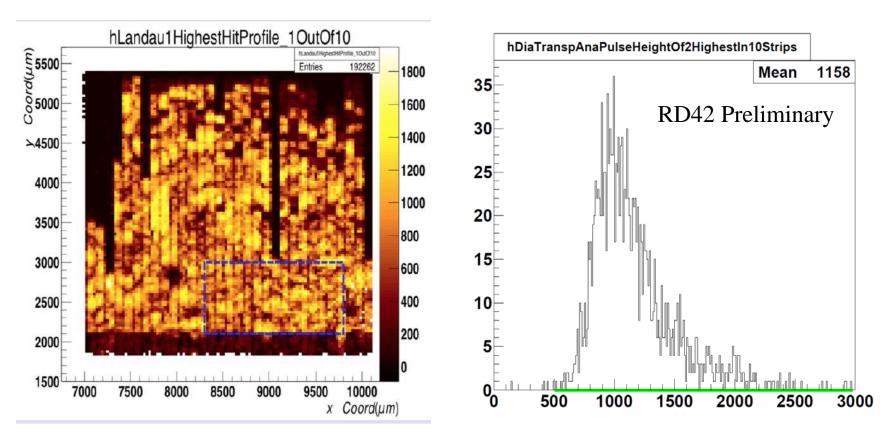
Full 3D Detector in Polycrystalline CVD Diamond

- The first full 3D detector in pCVD diamond was built in May/Sept 2016 with dramatic \succ improvements:
 - > An order of magnitude more cells: $99 \rightarrow 1188$
 - > Smaller cell size: $150\mu m \rightarrow 100\mu m$
 - > Higher column efficiency: $92\% \rightarrow 99\%$

Proved viability (>99%) of new column fabrication procedure

CERN

Preliminary Results of Full 3D Detector

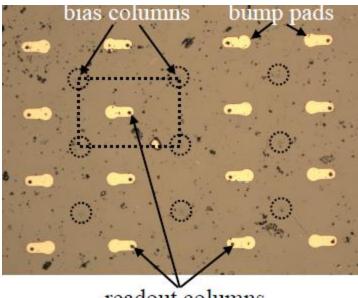

> The detector works well

T H E OHIO STATE UNIVERSITY

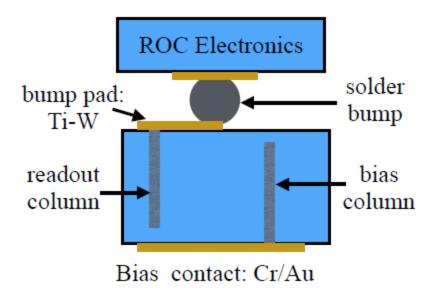
- > First plots of 3D average charge in entire detector
- Largest charge collection in pCVD diamond

Contiguous region shows > 85% of charge collection

Analysis in progress of full detector

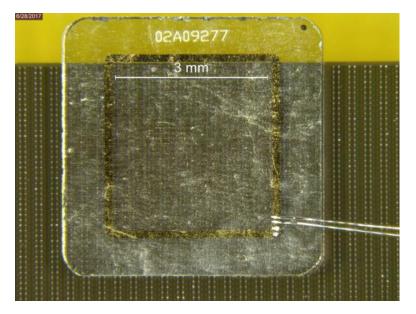


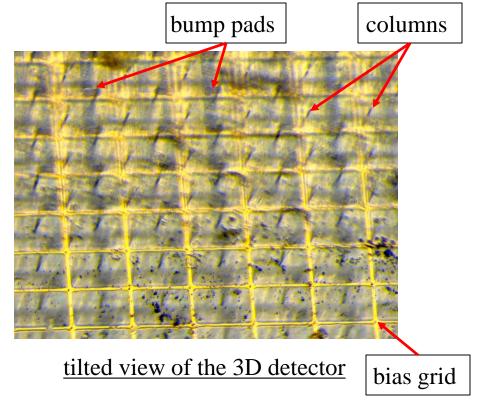
The First 3D Polycrystalline CVD Pixel Detector


- 3D columns were designed to stop 15µm before the end of the material and drilled from \succ both sides at **Oxford**
- Mask set by *Manchester*

T H E OHIO STATE UNIVERSITY

- Cleaning and photo-lithography at Ohio State
- Cr-Au metallization of HV back plane at *Ohio State* >
- Photo-lithography and metallization of pixel readout at *Princeton*
- Bump and wire bonding at *Princeton*


readout columns

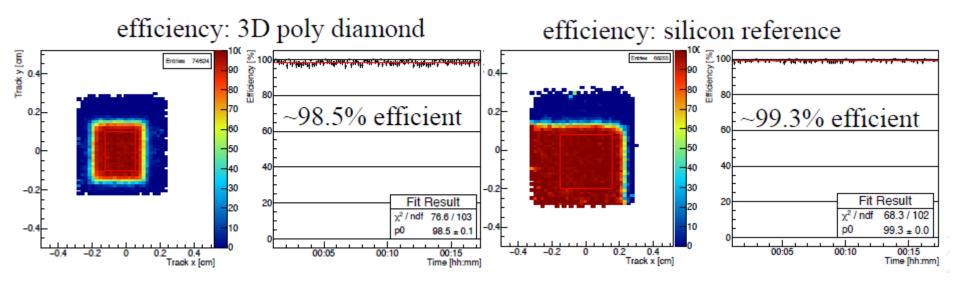

3D Pixel Detector

T H E OHIO STATE UNIVERSITY

- > Module building/test at *ETH-Zurich*, *Rutgers*
- > Irradiation at *JSI/Ljubljana*
- > Beam tests at *ETH-Zurich* and *Ohio State*

detector bonded on CMS-Pixel-Chip

> Successful production of a working 3D pixel detector



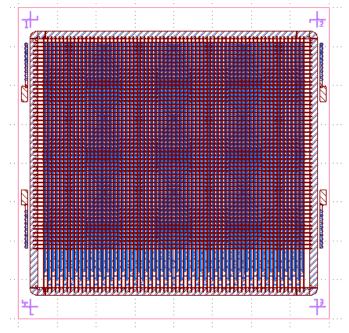
Beam Test of 3D Pixel Detector

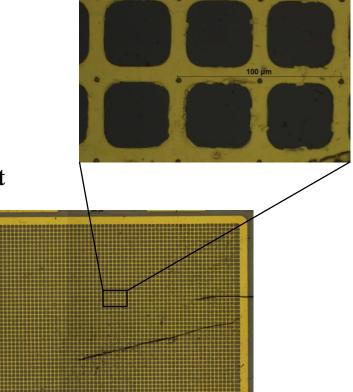
- Readout chip setup: *threshold* for accepting hits ~ 1500e
- *Efficiency* checked by counting all hits in the device under test and dividing them by the number of tracks predicted by the telescope within a fiducial area
- Preliminary results below

T H E OHIO STATE UNIVERSITY

Efficiency flat in time

Lower efficiency in diamond may be caused by lower field regions (being checked)

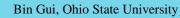

Production Plan: CMS, ATLAS 3D pCVD Pixel


- Presently producing 3500 cell pixel prototype
- > Two independent drillings
 - Oxford done
 - Manchester in progress
- Metallization (done for Oxford part)
- Bump boding

T H E OHIO STATE UNIVERSITY

- CMS @Princeton being done now
- > ATLAS @IFAE

> CMS device will be ready for August 7th beam test



HV bias side @OSU

Conclusion

- > Diamonds in the LHC machine making impact moving forward
- One of the first pixel projects started taking data
 ATLAS DBM re-commissioned for 13TeV collisions
- Observed no pulse height dependence in irradiated pCVD diamonds up to fluence 2×10¹⁵ reactor neutrons/cm².
- > 3D detector prototypes made great progress
 - > 3D works in pCVD diamond
 - Scale up worked
 - Smaller cells worked
- Successfully tested first 3D diamond with pixel readout
 - > Efficiency greater than 98.5%

Back up

 $\overset{\mathsf{T}}{O}\overset{\mathsf{H}}{H}\overset{\mathsf{E}}{O}$

STATE

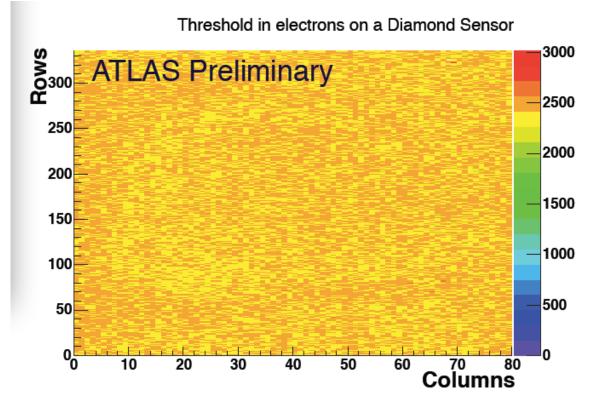
The 2017 RD42 Collaboration

The 2017 RD42 Collaboration

A. Alexopoulos³, M. Artuso²², F. Bachmair²⁶, L. Bäni²⁶, M. Bartosik³, J. Beacham¹⁵, H. Beck²⁵, V. Bellini² V. Belyaev¹⁴, B. Bentele²¹, E. Berdermann⁷, P. Bergonzo¹³ A. Bes³⁰, J-M. Brom⁹, M. Bruzzi⁵, M. Cerv³, G. Chiodini²⁹ D. Chren²⁰, V. Cindro¹¹, G. Claus⁹, J. Collot³⁰, J. Cumalat²¹ A. Dabrowski³, R. D'Alessandro⁵, D. Dauvergne³⁰, W. de Boer12, C. Dorfer26, M. Dunser3, V. Eremin8, R. Eusebi27, G. Forcolin²⁴, J. Forneris¹⁷, H. Frais-Kölbl⁴, L. Gallin-Martel³⁰ M.L. Gallin-Martel³⁰, K.K. Gan¹⁵, M. Gastal³, C. Giroletti¹⁹ M. Goffe⁹, J. Goldstein¹⁹, A. Golubev¹⁰, A. Gorišek¹¹ E. Grigoriev¹⁰, J. Grosse-Knetter²⁵, A. Grummer²³, B. Gui¹⁵ M. Guthoff³, I. Haughton²⁴, B. Hiti¹¹, D. Hits²⁶ M. Hoeferkamp²³, T. Hofmann³, J. Hosslet⁹, J-Y. Hostachy³⁰, F. Hügging¹, C. Hutton¹⁹, H. Jansen³, J. Janssen¹, H. Kagan^{15,0}, K. Kanxheri³¹, G. Kasieczka²⁶, R. Kass¹⁵ F. Kassel¹², M. Kis⁷, V. Konovalov¹⁵, G. Kramberger¹¹, S. Kuleshov¹⁰, A. Lacoste³⁰, S. Lagomarsino⁵, A. Lo Giudice17, E. Lukosi28, C. Maazouzi9, I. Mandic11, C. Mathieu⁹, M. Menichelli³¹, M. Mikuž¹¹, A. Morozzi³¹ J. Moss³², R. Mountain²², S. Murphy²⁴, M. Muškinja¹¹ A. Oh²⁴, P. Olivero¹⁷, D. Passeri³¹, H. Pernegger³ R. Perrino²⁹, F. Picollo¹⁷, M. Pomorski¹³, R. Potenza² A. Quadt²⁵, A. Re¹⁷, M. Reichmann²⁶, G. Riley²⁸, S. Roe³ D. Sanz²⁶, M. Scaringella⁵, D. Schaefer³, C. Schmidt⁷ S. Schnetzer¹⁶, S. Sciortino⁵, A. Scorzoni³¹, S. Seidel²³ L. Servoli³¹, S. Smith¹⁵, B. Sopko²⁰, V. Sopko²⁰ S. Spagnolo²⁹, S. Spanier²⁸, K. Stenson²¹, R. Stone¹⁶ C. Sutera², B. Tannenwald¹⁵, A. Taylor²³, M. Traeger⁷, D. Tromson¹³, W. Trischuk^{18,}, C. Tuve², L. Uplegger⁶ J. Velthuis¹⁹, N. Venturi¹⁸, E. Vittone¹⁷, S. Wagner²¹ R. Wallny²⁶, J.C. Wang²², J. Weingarten²⁵, C. Weiss³ T. Wengler³, N. Wermes¹, M. Yamouni³⁰, M. Zavrtanik¹¹

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy 3 CERN, Geneva, Switzerland ⁴ FWT, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ FNAL, Batavia, USA ⁷ GSI, Darmstadt, Germany ⁸ loffe Institute, St. Petersburg, Russia ⁹ IPHC, Strasbourg, France ¹⁰ ITEP, Moscow, Russia ¹¹ Jožef Stefan Institute, Ljubljana, Slovenia ¹² Universität Karlsruhe, Karlsruhe, Germany 13 CEA-LIST Technologies Avancees, Saclay, France 14 MEPHI Institute, Moscow, Russia ¹⁵ The Ohio State University, Columbus, OH, USA ¹⁶ Rutgers University, Piscataway, NJ, USA ¹⁷ University of Torino, Torino, Italy ¹⁸ University of Toronto, Toronto, ON, Canada ¹⁹ University of Bristol, Bristol, UK ²⁰ Czech Technical Univ., Prague, Czech Republic ²¹ University of Colorado, Boulder, CO, USA ²² Syracuse University, Syracuse, NY, USA ²³ University of New Mexico, Albuquerque, NM, USA ²⁴ University of Manchester, Manchester, UK ²⁵ Universität Goettingen, Goettingen, Germany ²⁶ ETH Zürich, Zürich, Switzerland ²⁷ Texas A&M, College Park Station, TX, USA ²⁸ University of Tennessee, Knoxville, TN, USA 29 INFN-Lecce, Lecce, Italy 30 LPSC-Grenoble, Grenoble, Switzerland 31 INFN-Perugia, Perugia, Italy 32 Cal State Univ - Sacramento, USA

130 participants

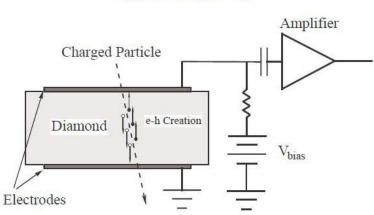

32 institutes

CERN

ATLAS Diamond Beam Monitor

- > ATLAS DBM integrated in ATLAS readout in 2015
- > Thresholds tuned to **2500e**

> Would like to lower this (**1100e** possible on bench)

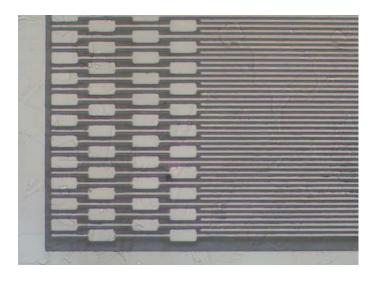


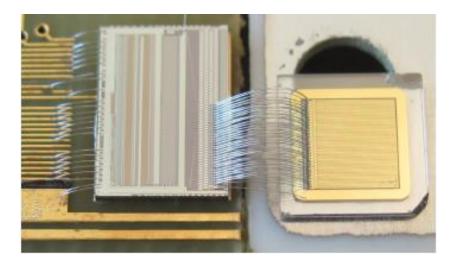
Collection Distance

T H E OHIO STATE UNIVERSITY

> Collection Distance, $d = (\mu_e \tau_e + \mu_h \tau_h) E$, is an average drift distance in the charge collection process which is of interest in the development of radiation detectors. μ is the mobility of free carriers (electron and hole) and τ is carrier lifetime.

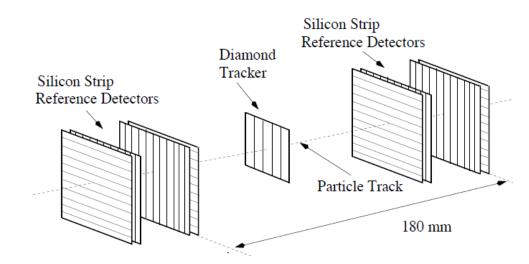
To collect large charge, it needs good collection distance.




Signal formation

Radiation Tolerance

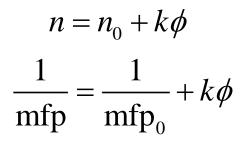
T H E OHIO STATE UNIVERSITY

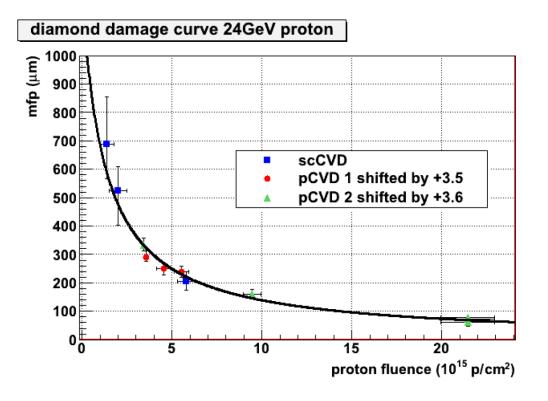


strip pattern

- > Patterning the diamonds
 - > Pad, strip and pixel devices
- Double –sided metallization
 edgeless
- Segmentation device critical for radiation studies
 - Charge & position

mounted diamond with amplifier

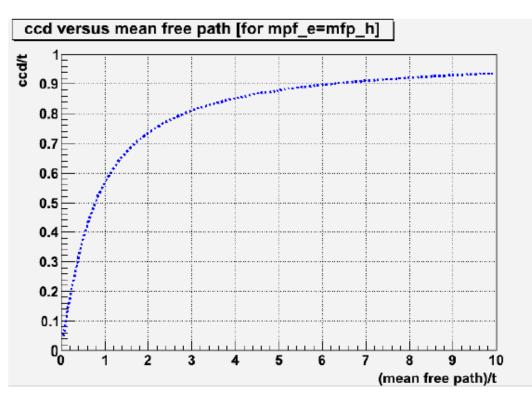



Proton Irradiation at CERN

- > CERN PS 24GeV protons
- Damage equation

T H E OHIO STATE UNIVERSITY

- > mfp_0 initial mean free path (assume $mfp_e = mfp_h$)
- ➢ k is damage constant
- ▶ ♦ fluence

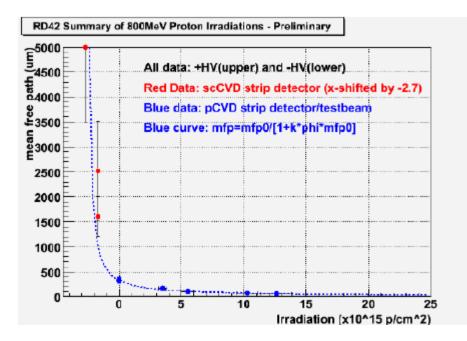

- Irradiation results up to 2.2e16p/cm² (~500Mrad)
- > Same damage curve, same damage constant (k) for scCVD and pCVD diamond
- > Large mfp₀ performs better at any fluence

CERN

Charge Collection Distance vs. Mean Free Path

- scCVD ccd ~ thickness; pCVD ccd < thickness</p>
- ccd direct measurement (no correction)
- > mfp correct theory: assume $mfp_e = mfp_h$ (correct data)

$$\frac{\operatorname{ccd}}{\operatorname{t}} = \sum_{i} \frac{\operatorname{mfp}_{i}}{\operatorname{t}} \left(1 - \frac{\operatorname{mfp}_{i}}{\operatorname{t}} \left(1 - e^{-\frac{\operatorname{t}}{\operatorname{mfp}_{i}}} \right) \right)$$



CERN

Irradiation at Lower Energy

LANL 800 MeV protons

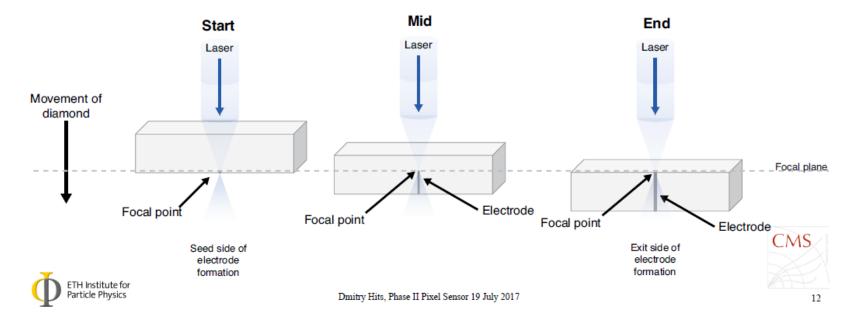
- ▶ Irradiation results up to 1.4e16p/cm²
- > damage constant $k = 1.2e-18\mu m^{-1} cm^2$
- LANL 800 MeV protons damage : CERN 24 GeV protons damage = 1.6~1.8

28

Summary of Radiation Tolerance

Particle	Energy	Relative damage constant k
Proton	24GeV	1.0
	800MeV	1.79 ± 0.13
	70MeV	2.4 ± 0.4
	25MeV	4.5 ± 0.6
Neutron	1MeV	4.5 ± 0.5
Pion	200MeV	2.5 ~ 3.0

3D Detector Fabrication

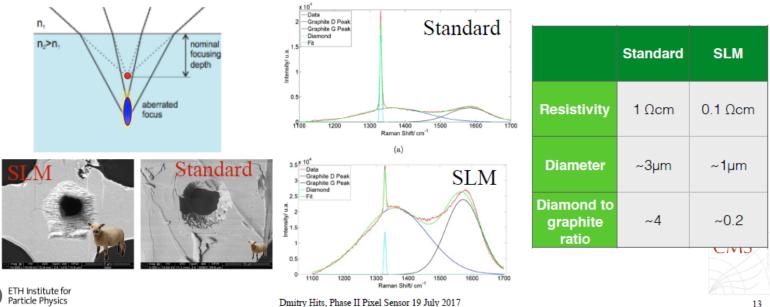


T H E OHIO STATE UNIVERSITY

3D detector fabrication

- Femtosecond laser converts insulating diamond into a resistive mixture of various carbon phases: DLC, amorphous carbon, graphite, etc [Bachmair et al., NIM A, 786 (2015)]
- Early detectors had 90% column yield
 - recently ~100% has been achieved using Spatial Light Modulation to correct for aberration in diamond

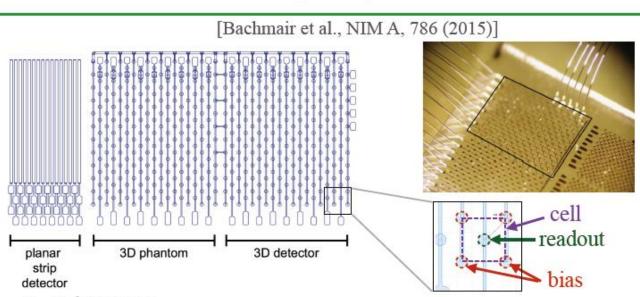
Spatial Light Modulation


ETH zürich

T H E OHIO STATE UNIVERSITY

3D detector fabrication

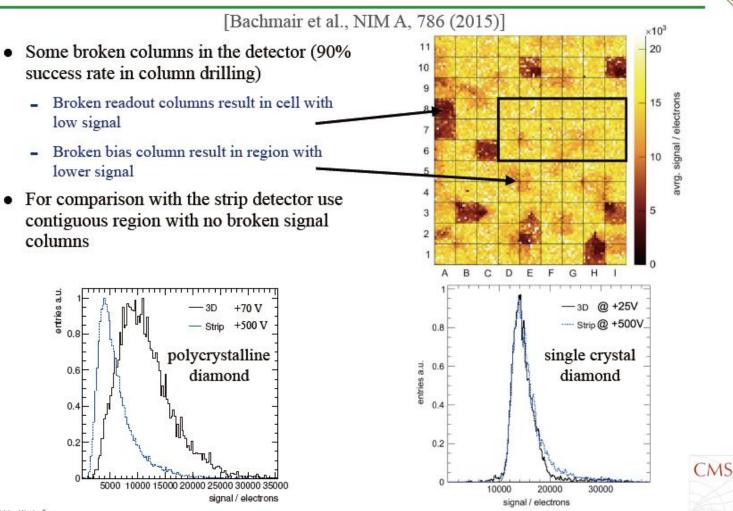
- Femtosecond laser converts insulating diamond into a resistive mixture of various carbon phases: DLC, amorphous carbon, graphite, etc [Bachmair et al., NIM A, 786 (2015)]
- Early detectors had 90% column yield ۲
 - recently >99% has been achieved using Spatial Light Modulation (SLM) to correct for aberration in diamond



3D Detector in Single Crystal CVD Diamond

3D detector in single crystal CVD diamond

- 3 detectors
 - strip with backside contact for bias
 - 3D with bias and readout contacts on the same side (150µm cell size)
 - 3D phantom (same metal pattern as 3D but without graphitic columns)
- Some broken columns in the detector (90% success rate in column drilling)



32

3D Detector in Single Crystal CVD Diamond

3D detector in single crystal CVD diamond

