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 The inner detectors of high energy physics experiments withstand large radiation doses!

 Innermost layers: highest radiation damage (will be 100MHz/cm2 to 200MHz/cm2)

 Current detector is designed to survive 12 month in High-Luminosity LHC (HL-LHC)

 R&D for more radiation hard detector designs

and/or materials

 Chemical Vapor Deposition (CVD) diamond as 

sensor material has been used in almost every 

experiment, since its

 Radiation hardness – no frequent replacements

 Low dielectric constant – low capacitance

 Low leakage current – low readout noise

 Good insulating properties – large active area

 Room temperature operation – no cooling necessary

 Fast signal collection time –no ballistic deficit 

 Smaller signal than Silicon – larger energy to create eh-pair

 RD42 collaboration is investigating CVD diamond as material for tracking in extreme 
radiation environments. Various detector designs have been used in the study of signal 
independence/dependence on incident particle flux

 Pad → full diamond as single cell readout

 Pixel → diamond sensor on pixel chips

 3D → strip/pixel detector with clever design to reduce drift distance
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 Diamond produced in an artificial process.

 Diamonds are “synthesized” from a plama

 The diamond “copies” the substrate

 Investigation of two different diamond types

 Polycrystalline Chemical Vapor Deposition pCVD diamond

 Single Crystal Chemical Vapor Deposition svCVD diamond

 pCVD signals smaller than scCVD in planar configuration
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Polycrystalline CVD diamond wafer

15 cm

Single crystal CVD diamond

4 cm



 Beam condition/loss monitors

 Essential in all modern collider experiments

 ATLAS Diamond Beam Monitor (DBM)

 Diamond pixel detectors in ATLAS (tracking)

 45 pCVD diamonds modules with FE-I4b chips

 Modules assembled at CERN

 Installed during LS1

 8 telescopes (2 Si & 6 Diamond) symmetric around 

ATLAS IP

 854mm < |z| < 1092mm

 3.2 < |η| < 3.5

 ATLAS DBM integrated in ATLAS readout in 2015.

 Future HL-LHC trackers

 3D diamond detectors

 Future beam condition/luminosity monitor

 Multi-pad design BCM’
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DBM telescopes

Large radiation

Little cooling



 Use hits from the 3 modules to reconstruct tracks

 Plots with initial alignment

 Clear discrimination between IP and background particles

 2 electrical incidents in 2015 caused loss of modules (both Si and Diamond)

 Successful re-commissioning of surviving modules

 Diamond and Si modules now part of ATLAS data taking
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longitudinal distance to IP radial distance to IP



 Paul Scherrer Institute (PSI)

 260MeV π+

 Rate up to 20MHz/cm2

 50µm position resolution

 Pad detectors tested in ETH-Z telescope (CMS pixel, 100μm × 150μm)

 Electronics is pre-prototype for HL-LHC BCM/BLM: luminosity analog board

 4 tracking planes – the inner 2 planes provide masked trigger

 Scintillator for precise ~ 1ns event time
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test setup 19.8ns bunch spacing clearly visible



 Diamonds in custom built amplifier boxes 

 Cleaning, photo-lithography and Cr-Au metallization 

 Low noise, fast amplifier with O(5ns) rise time

 Pre-prototype for HL-LHC BCM/BLM
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fast amplifier box Diamond (bottom right)  and 

fast amp (top left)



 Pulse rate was measured at several rate points between 2kHz/cm2 and 10MHz/cm2

 scanned up and down up to 4 times to check repeatability

 No absolute pulse height and noise calibration yet

 No rate dependence observed in pCVD up to 10-20MHz/cm2

 Now extending dose to 1016n/cm2
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Average Pulse Height vs pion Rate



 After long radiation fluence all detectors are trap limited.

 Mean free path < 75μm

 Would like to keep drift distances smaller than MFP. 

 Thin planar detector, W2D ~50µm

 3D detector, W3D~37µm (for 50µm × 50µm cells)

 Incorporate bias and readout electrodes into detector’s bulk

 Same detector thickness (same amount of charge induced by an ionizing particle)

 Shorter drift distance in 3D detectors

 Reduced probability of charge trapping in radiation damaged and/or pCVD detector

August 3, 2017Bin Gui, Ohio State University 9



 Femtosecond laser converts insulating diamond into a resistive mixture of various 

carbon phases: DLC, amorphous carbon, graphite, etc

 Spatial Light Modulation (SLM) corrects aberration in diamond, the column yield 

increased from 90% to >99%
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Laser drilled holes, pCVD samples

columns made with 800nm femtosecond laser

initial cells 150µm × 150µm, columns 6µm diameter



 Simultaneously readout all 3 devices

 3D: bias and readout contacts on the same side (150µm × 150µm cell size)

 Phantom: same metal pattern as 3D strip but without graphitic columns

 Planar strip: bias contact on backside
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 Tested at CERN with 120GeV protons

 Beam telescope reconstructs particle 

tracks and predicts their impact 

position in the device under test with 

< 5µm precision

 Low noise VA2 readout

3D

planar strip

phantom
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Planar strip 3D StripPhantom

Visually 3D gives more charge than 

planar strip!

 Measured column efficiency: 92%

 Broken readout columns result in cell with low signal

 Broken bias columns result in region with lower signal

 Measured noise: ~proportional to capacitance

 Measured signal: read out as ganged cells

 Measured signal (diamond thickness 500μm)

 Planar strip detector ave charge : 6900e or ccd=192μm

 3D ave charge: 13500e or ccdeq=350-375μm

 For the first time collect > 75% of charge in pCVD!



 The first full 3D detector in pCVD diamond was built in May/Sept 2016 with dramatic 

improvements:

 An order of magnitude more cells: 99 → 1188

 Smaller cell size: 150µm →  100µm

 Higher column efficiency: 92% → 99%
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Readout side

HV bias side

Proved viability (>99%) of new column fabrication procedure



 The detector works well

 First plots of 3D average charge in entire detector

 Largest charge collection in pCVD diamond

Contiguous region shows > 85% of charge collection

 Analysis in progress of full detector
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RD42 Preliminary



 3D columns were designed to stop 15µm before the end of the material and drilled from 

both sides at Oxford

 Mask set by Manchester

 Cleaning and photo-lithography at Ohio State

 Cr-Au metallization of HV back plane at Ohio State

 Photo-lithography and metallization of pixel readout at Princeton

 Bump and wire bonding at Princeton
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 Module building/test at ETH-Zurich, Rutgers

 Irradiation at JSI/Ljubljana

 Beam tests at ETH-Zurich and Ohio State

 Successful production of a working 3D pixel detector
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detector bonded on CMS-Pixel-Chip tilted view of the 3D detector

bump pads columns

bias grid



 Readout chip setup: threshold for accepting hits ~ 1500e

 Efficiency checked by counting all hits in the device under test and dividing them by the 

number of tracks predicted by the telescope within a fiducial area

 Preliminary results below

 Efficiency flat in time

 Lower efficiency in diamond may be caused by lower field regions (being checked)
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 Presently producing 3500 cell pixel prototype

 Two independent drillings

 Oxford – done

 Manchester – in progress

 Metallization (done for Oxford part)

 Bump boding

 CMS @Princeton – being done now

 ATLAS @IFAE

 CMS device will be ready for August 7th beam test
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HV bias side @OSU



 Diamonds in the LHC machine making impact moving forward

 One of the first pixel projects started taking data

 ATLAS DBM re-commissioned for 13TeV collisions

 Observed no pulse height dependence in irradiated pCVD diamonds up to fluence

2×1015 reactor neutrons/cm2.

 3D detector prototypes made great progress

 3D works in pCVD diamond

 Scale up worked

 Smaller cells worked

 Successfully tested first 3D diamond with pixel readout

 Efficiency greater than 98.5%
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 ATLAS DBM integrated in ATLAS readout in 2015

 Thresholds tuned to 2500e

 Would like to lower this (1100e possible on bench)
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Collection Distance,                                   , is an average drift distance in the charge 

collection process which is of interest in the development of radiation detectors. 

μ is the mobility of free carriers (electron and hole) and τ is carrier lifetime.

To collect large charge, it needs good collection distance. 
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 Patterning the diamonds 

 Pad, strip and pixel devices

 Double –sided metallization

 edgeless

 Segmentation device critical for

radiation studies

 Charge & position
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strip pattern mounted diamond with amplifier



 CERN PS 24GeV protons

 Damage equation

 mfp0 initial mean free path

(assume  mfpe = mfph)

 k is damage constant

 ϕ fluence

 Irradiation results up to 2.2e16p/cm2 (~500Mrad)

 Same damage curve, same damage constant (k) for scCVD and pCVD diamond

 Large mfp0 performs better at any fluence
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 scCVD ccd ~ thickness; pCVD ccd < thickness

 ccd direct measurement (no correction)

 mfp correct theory: assume mfpe = mfph (correct data)
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 LANL 800 MeV protons

 Irradiation results up to 1.4e16p/cm2

 damage constant k = 1.2e-18µm-1cm2

 LANL 800 MeV protons damage : CERN 24 GeV protons damage = 1.6~1.8
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Particle Energy Relative damage constant k

Proton 24GeV 1.0

800MeV 1.79 ± 0.13

70MeV 2.4 ± 0.4

25MeV 4.5 ± 0.6

Neutron 1MeV 4.5 ± 0.5

Pion 200MeV 2.5 ~ 3.0
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