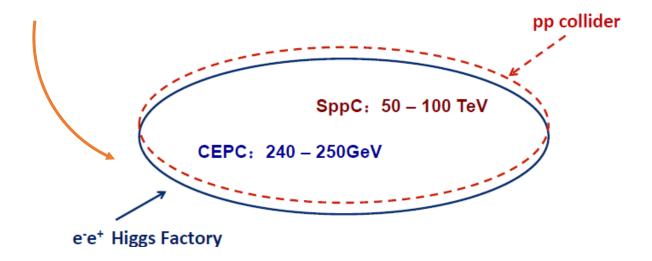


MEETING OF THE AMERICAN PHYSICAL SOCIETY DIVISION OF PARTICLES AND FIELDS

Overview of the CEPC Vertex Detector

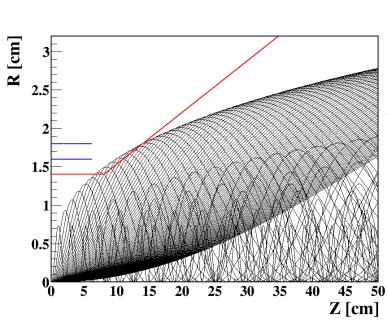
Hongbo Zhu (IHEP, Beijing) On behalf of the CEPC Study Group

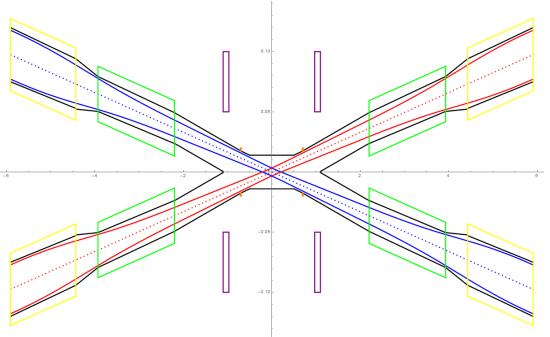
Outline


- Introduction to the CEPC
- The CEPC Vertex Detector
- Summary and Outlook

Introduction

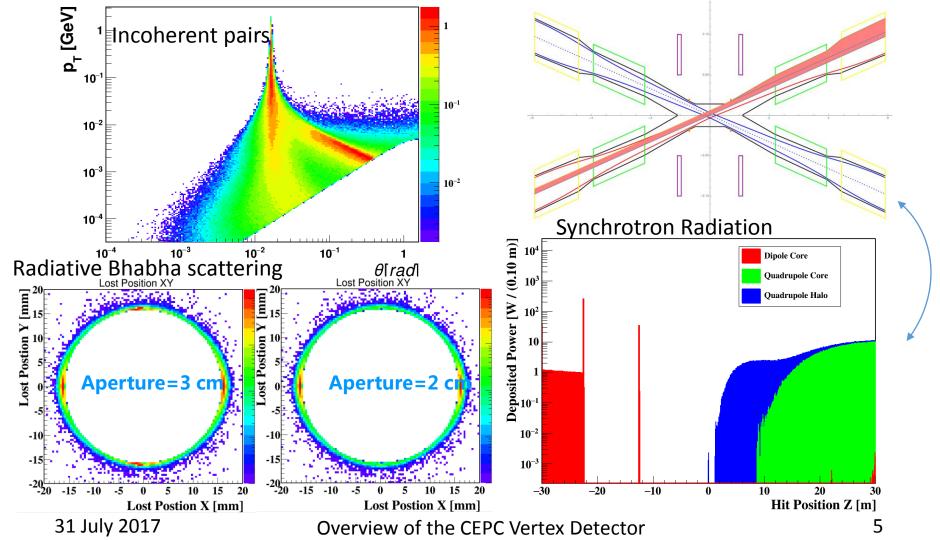
• The Higgs Discovery in 2012 witnessed the breakthrough in the history of particle physics and triggered wave of thoughts on Higgs Factories around the world ...


A. Bondel and F. Zimmerman, *A High Luminosity e⁺e⁻ Collider in the LHC tunnel to study the Higgs Boson*, arXiv:1112.2518, even before the Higgs discovery!


• Where the story began ... presented by Prof. Qing Qin at the Accelerators for a Higgs Factory: Linear vs. Circular (HF2012)

Machine-Detector Interface (MDI)

 Extremely complicated and challenging → Optimization (trade-off) between accelerator and detector performance



- Proper placement of accelerator and detector components in the interaction region
 - Estimation of radiation backgrounds

Radiation Backgrounds

• Updating the double ring results: hit density, detector occupancy, radiation levels

Vertex Detector Requirements

• To achieve high impact parameter resolution as required for heavy flavor (b/c) tagging $\rightarrow H \rightarrow b\overline{b}/c\overline{c}/gg$ branching ratios

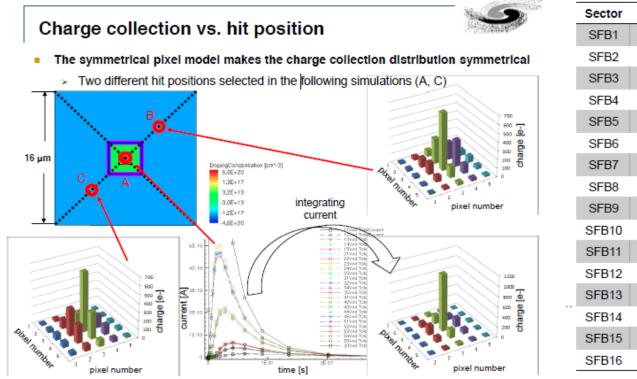
$$\sigma_{r\phi} = 5 \oplus 10/p \cdot \sin^{3/2} \theta \ \mu \mathrm{m}$$

- Imposing stringent requirements on the vertex detector
 - ► Spatial resolution near the interaction point $\sigma_{SP} \sim 3 \mu m \rightarrow high granularity$
 - Material budget ≤0.15%X0/layer → monolithic pixel sensor (sensor + embedded electronics, thinned down to e.g. 50 µm) + air cooling (power dissipation ≤50 mW/cm², but power-pulsing not optional)
 - ► Low detector occupancy below 0.5% (empirical) → high granularity and/or short readout time
 - Radiation tolerance (being updated): ~1 MRad/year (total ionization dose) and 10¹² n_{eq}/cm²/year (non-ionization energy loss)

31 July 2017

Candidate Technologies

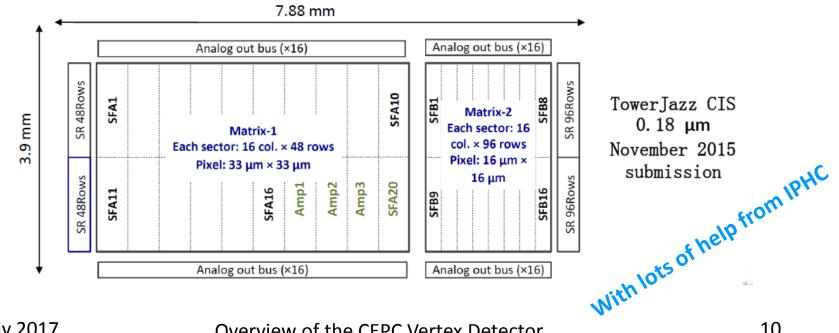
- Monolithic pixel sensor technologies considered:
 - **CMOS**: Ultimate installed for STAR PXL, ALPIDE for ALICE ITS upgrade, technologies pursued by ATLAS for Pixel Phase-II upgrade ...
 - SOI: actively pursued for X-ray detection, potential issue with radiation tolerance but continuously improved
 - **DEPFET**: Belle-II pixel detector (attractive feature of self-supporting structure with low material budget in the active volume)
 - **3D-IC**: trials within the 3D IC consortium, promising (ultimate detector), technology not mature enough
- **CMOS** and **SOI** technologies chosen for initial sensor R&D.


Sensor Design Considerations

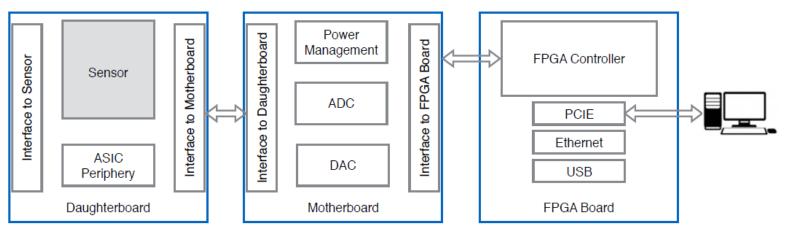
- Sensing diode and front-end
 - Spatial resolution
 - Analog power consumption
- Readout architecture
 - Fast readout/time-stamping
 - Digital power consumption
 - Data compression and high-speed transmission
- Radiation tolerance
 - TID
 - NIEL
- Sensor thinning
 - Backside processing

31 July 2017

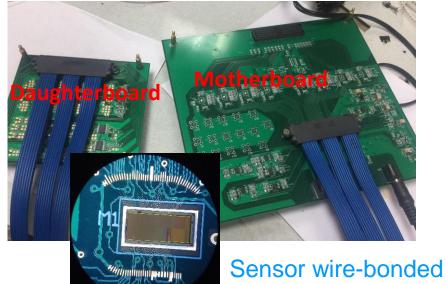
CMOS Pixel Sensor


 Important to understand the charge collection efficiency with different diode geometries, epitaxial layer resistivity and thickness, radiation damage ..., TCAD simulation followed by measurements → sensor optimization

		obeen 18	
Sector	Dlode area	Footprint	Structure
SFB1	$3 \ \mu m^2$	20 µm ²	2T_nmos
SFB2	$4 \ \mu m^2$	$20 \ \mu m^2$	2T_nmos
SFB3	$8 \ \mu m^2$	20 µm ²	2T_nmos
SFB4	$3 \ \mu m^2$	15 μm ²	2T_nmos
SFB5	$4 \ \mu m^2$	15 μm²	2T_nmos
SFB6	8 µm ²	15 µm ²	2T_nmos
SFB7	$3 \ \mu m^2$	11 μm ²	2T_nmos
SFB8	$4 \ \mu m^2$	$11 \ \mu m^2$	2T_nmos
SFB9	$8 \ \mu m^2$	11 μm ²	2T_nmos
SFB10	3 µm ²	8 μm ²	2T_nmos
SFB11	$4 \ \mu m^2$	8 μm ²	2T_nmos
SFB12	8 µm ²	8 μm ²	2T_nmos
SFB13	$8 \ \mu m^2$	$20 \ \mu m^2$	2T_pmos
SFB14	4 μm ²	8 μm ²	2T_pmos
SFB15	$8 \ \mu m^2$	$20 \ \mu m^2$	3T_nmos
SFB16	$4 \ \mu m^2$	8 μm ²	3T_nmos


Exploratory Prototype

- Goals: sensor optimization and radiation hardness study
- Floorplan overview: •
 - Two matrices: Matrix-1 with 33 \times 33 μ m² pixels (except one sector SFA20 with $16 \times 16 \,\mu\text{m}^2$ pixels), Matrix-2 with $16 \times 16 \,\mu\text{m}^2$ pixels.
 - Matrix-1: 20 sectors, each sector with 48 rows and 16 columns
 - Matrix-2: 16 sectors, each sector with 96 rows and 16 columns


31 July 2017

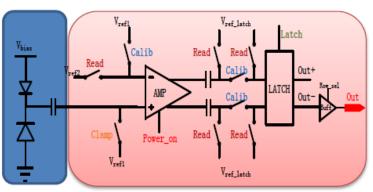
Sensor Characterization

- Low noise data amplifier
- Data acquisition circuit design
- PCIE and data processing
- Additional NI chassis interface

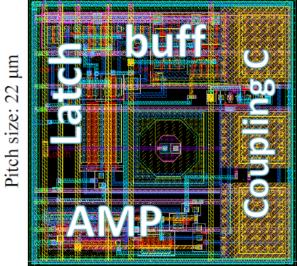
31 July 2017

Overview of the CEPC Vertex Detector

to the daughterboard


2nd Submission: Digital Readout

Name	Structure	Pixel pitch	Integ.time	Power density	Spatial resolution
MISTRAL (IPHC)	Column-level comparator, Rolling-shutter	22 × 33 (66) μm²	30 µs	200 (100) mW/cm²	
ASTRAL (IPHC)	In-pixel comparator, Rolling-shutter	24 × 31(IB) μm ² 36 x 31 (OB) μm ²	20 µs	85 mW/cm ² 60 mW/cm ²	$\approx 5 \mu m$
ALPIDE (CERN,IN FN,CCNU, YONSEI)	In-pixel comparator, In-matrix zero compression readout	27 x 29 μm²	<mark>< 4</mark> μs	< 39 mW/cm ²	
Attempt	Rolling shutter & AERD	More compact	< 10 µs	< 80 mW/cm ²	Higher resolution

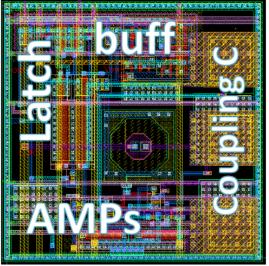

31 July 2017

Design I: Rolling Shutter Readout

Digital pixels in rolling-shutter readout mode: 2 different versions

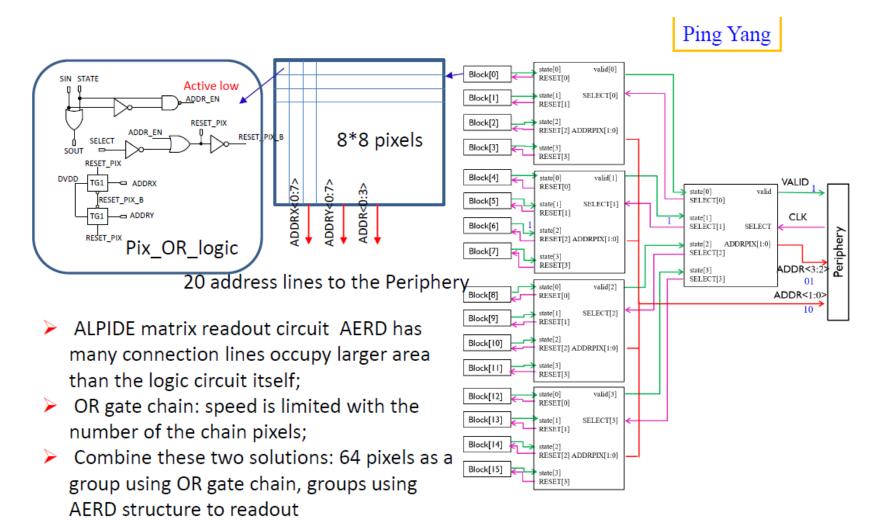
Version 1: differential amplifier + latch

- Same amount of transistors;
- Offset cancellation technique;
- Version 2 has higher signal gain, but suffers "more" from "Latch" input voltage distortion.


Some key parameters in the design:

- Sensing point
- AMPs: noise/gain
- Latch: offset
- Timing: read out speed

Version 2: two stage CS amplifiers + latch


Yang ZHOU

Pitch size: 22 µm

31 July 2017

Design II: AERD Readout (MIC4)

Macro pixel arrays + address lines

MIC4 FE: Current Comparator

Modifications to the FE of the ALPIDE for ALICE ITS Upgrade Ping Yang Threshold Bias Circuit Current Comparator Cascode Amplifier For Test VReach 🖍 VPul 🕫 avon. PIX_IN €МО ۳M7 IBIAS) IDB OUT_S OUT_D Input €мı PDI IN OUT A CHSN2 threshold VCASN) VOLIP VCASP an < 3aSOUT D Μ8 **Clipping Circuit** Simulation results

•Signal charge creates negative voltage step $\Delta V_{\textit{PIX_IN}}$ at input node(PIX_IN).

•From OUT A baseline voltage to point where

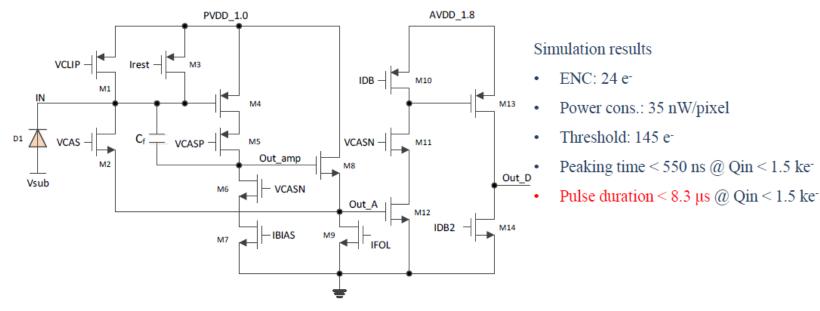
discriminated output OUT_D flips when $I_{M8} > I_{DB}$.

$$\Delta V_{OUT_A} \approx \frac{C_s \bullet \Delta V_{PIX_IN}}{C_{OUT_A}} = \frac{C_s}{C_{OUT_A}} \bullet \frac{Q_{in}}{C_{PIX_IN}}$$

- ENC: 8 e-
- Power cons.: 61 nA/pixel
- Threshold: 140 e-
- Peaking time < 1 us
- Pulse duration $< 3 \ \mu s$

31 July 2017

Charge Sensitive Amplifier

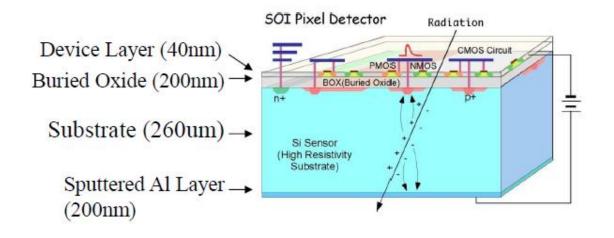

Simple structure with high gain \rightarrow compact layout

CSA based front-end circuit:

A direct cascode amplifier for the CSA

Simple structure with high gain \rightarrow for a compact layout

A very low feedback capacitance $C_f(0.2 \text{ fF})$ with low mismatch \rightarrow for a high charge-to-voltage conversion gain, low noise and low mismatch between pixels A single-end current comparator \rightarrow for a compact layout



CSA based analog front-end circuit

Overview of the CEPC Vertex Detector

Ying ZHANG

SOI Pixel Sensor

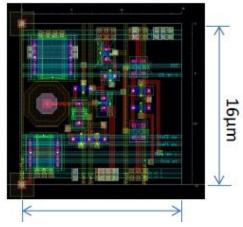
- LAPIS 0.2µm process
 - Fully depleted CMOS
 - HR substrate
- Early investigation with INTPIX2P5 (2015)
- Compact Pixel for Vertex (CPV)
 - CPV1/2 (2015/2016)
 - Focus on Sensing diode + Front-end

31 July 2017

CPV Specifications

	ASTRAL	ALPIDE	CPV	
Process technology	0.18 µm	0.2 μ <i>m</i> SOI		
Readout strategy	Rolling shutter asynchronous		Rolling shutter	
Readout time	20 μs <2 μs			
Power	85 mW/cm ²	39 mW/cm ²	Analog power < 10 mW/cm²	
Pixel size	$22 \times 33 \ \mu m^2$ $28 \times 28 \ \mu m^2$		$16 \times 16 \ \mu m^2$	
Spatial resolution	≈ 5	μm	Expected < 3µm	
Total signal for MIP	≈ <i>1200 e⁻ (20µm</i> epi-l	<pre>≈4000 e⁻ (back thinning to 50µm, fully depleted)</pre>		

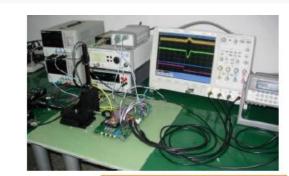
- Unique opportunity to explore very compact pixel circuit
 - 3 times larger MIP signal
 - Possibly smaller cluster size


31 July 2017

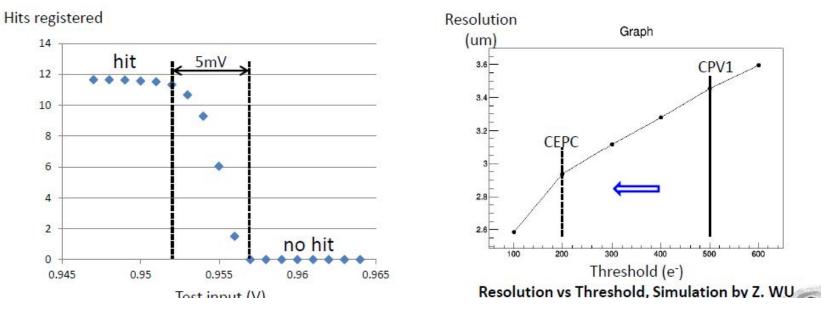
CPV1 Design

- First digital pixel of 16um pitch
- CS voltage amplifier, gain ~ 10
- Inverter as discriminator
- Threshold charge injected to sensing node
- Pixel array: 64*32 (digital) + 64*32 (analog)
- Double-SOI process for shielding and radiation enhancement
- Submitted June, 2015

CPV1 digital pixel

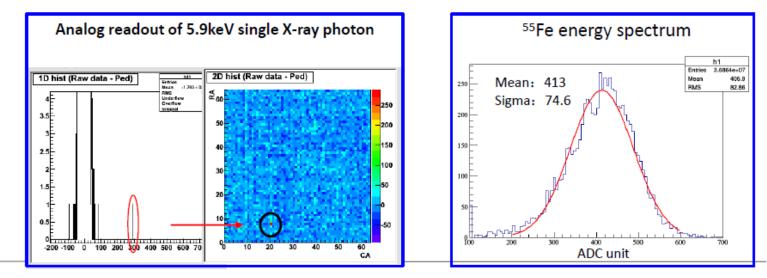


Overview of the CEPC Vertex Detector


Yunpeng LU

Single Pixel Response

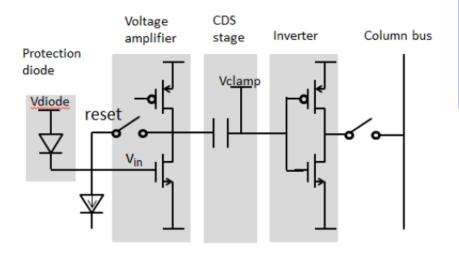
- Chip circuit function verified on single pixel
 - Voltage gain of amplifier ~ 10
 - Threshold scan
 - Temporal noise ~ 50e⁻ (< 20 e⁻ expected)
- Bias voltage not applicable due to a design fault
 - Diode capacitance 3 times larger


Yunpeng LU Zhigang WU

31 July 2017

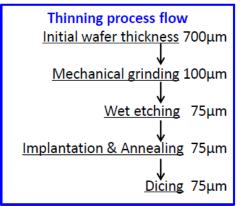
⁵⁵Fe Radiative Source Test

- Analog pixel array
 - 5.9keV X-ray photon (1640e⁻);
 - Single photon event clearly visible;
 - Diode capacitance calibrated by using the 5.9 keV peak (3×3 cluster);
 - Average ENC = 47e⁻;
- First proof of principle obtained.
 - Evaluation of digital pixel array is underway.



Yunpeng LU Zhigang WU

31 July 2017


CPV2 Design

- Protection diode added
 - Enable full depletion on sensor
- In-pixel CDS stage inserted
 - improve RTC and FPN noise
 - replace the charge injection threshold
- Submitted June, 2016

Yunpeng LU Yang ZHOU

Wafer thinning & dicing

Chips expected to be back in May 2017

Summary and Outlook

- Circular Electron Positron Collider (CEPC) proposed to measure precisely Higgs properties and Electroweak parameters
 - Evolving machine design and parameters → Double Ring as the CDR baseline design
 - On-going detector design and optimization; **R&Ds on critical detector technologies**
- Stringent requirements on the Vertex Detector; R&D with CMOS and SOI
 - Continuous efforts on pixel sensor design and characterization
 - Optimization of the detector layout, taking into account readout electronics, supporting structure, cooling, powering, etc.
- International collaboration under discussion ...

BACKUP

CEPC-SppC

• Phase I: Circular Electron-Positron Collider (CEPC)

- ► Higgs Factory: center-of-mass energy ~240 GeV (ZH threshold), peak luminosity ~2 × 10³⁴ cm⁻²s⁻¹, 2 interaction points, ~1M clean Higgs events over 10 years → Higgs precision measurements
- ► Operation at **Z-pole/WW threshold** → **EW precision measurements**

- Phase II: Super Proton-Proton Collider (SppC)
 - Discovery machine, center-of-mass energy 50 100 TeV, peak luminosity~1 ×10³⁵ cm⁻
 ²s⁻¹, 2 interaction points → Energy frontier for New Physics
 - Other possible collision modes: ep, eA, pA and AA

LEP-LHC Style

31 July 2017

CEPC Detector Performance

Table taken from the CEPC Pre-CDR

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{ m T})\sim 2 imes 10^{-5}$
$H ightarrow \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Tacker	$\oplus 1 imes 10^{-3}/(p_{ m T}\sin heta)$
$H \rightarrow b \bar{b}, \ c \bar{c}, \ g g$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi}\sim5\oplus10/(p\sin^{3/2}\theta)\mu{\rm m}$
$H \to q \bar{q}, V V$	$BR(H \rightarrow q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim$ 3 – 4%
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$ (GeV)

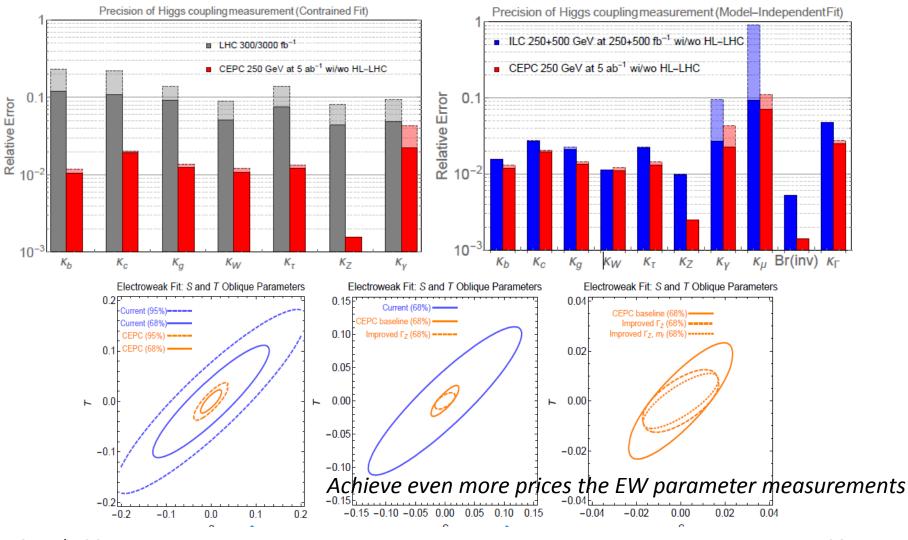
Table 6.1 Required performance of the CEPC sub-detectors for critical benchmark Higgs processes.

- Physics feasibility studies based on the ILD-like detector, optimization and/or redesign toward lower center-of-mass energies

CEPC Detector Performance

Table taken from the CEPC Pre-CDR

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{ m T})\sim 2 imes 10^{-5}$
$H ightarrow \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Tacker	$\oplus 1 imes 10^{-3}/(p_{ m T}\sin heta)$
$H \rightarrow b \bar{b}, \ c \bar{c}, \ g g$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi}\sim5\oplus10/(p\sin^{3/2}\theta)\mu{\rm m}$
$H \to q\bar{q}, VV$	$BR(H \rightarrow q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3$ – 4%
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$ (GeV)


Table 6.1 Required performance of the CEPC sub-detectors for critical benchmark Higgs processes.

- Physics feasibility studies based on the ILD-like detector, optimization and/or redesign toward lower center-of-mass energies

Machine Parameters

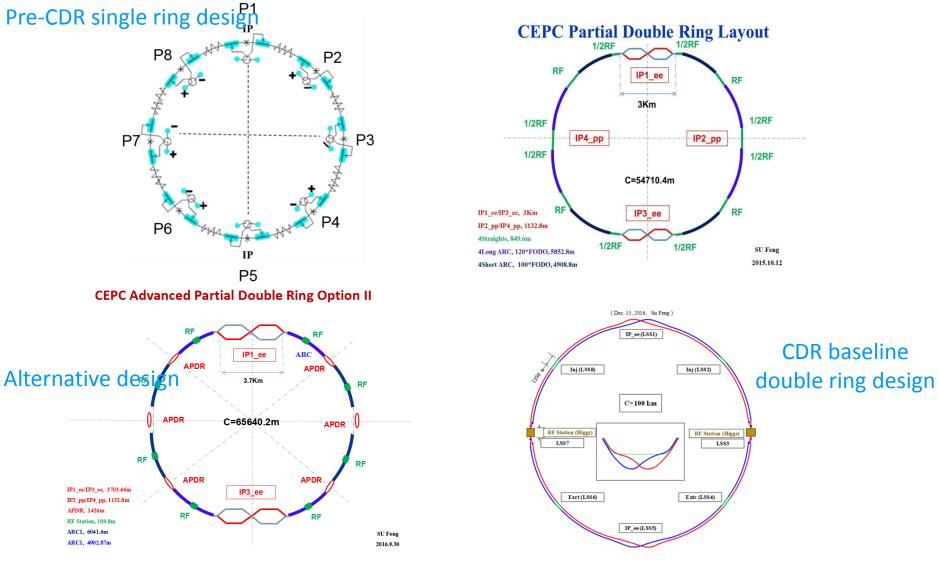
	Pre-CDR	H-high lumi.	H-low power	W	Z	
Energy (GeV)	120	120	120	80	45.5	45.5
Circumference (km)	54	100	100	100	100	100
SR loss/turn (GeV)	3.1	1.67	1.67	0.33	0.034	0.034
N_e /bunch (10 ¹¹)	3.79	1.12	1.12	1.05	0.46	0.46
Bunch number	50	555	333	1000	16666	65716
SR power /beam (MW)	51.7	50	30	16.7	12.7	50
$\beta_{IP} x/y (m)$	0.8/0.0012	0.3/0.001	0.3/0.00 1	0.1/0.001	0.12/0.001	0.12/0.001
Emittance x/y (nm)	6.12/0.018	1.01/0.0031	1.01/0.0031	2.68/0.008	0.93/0.0049	0.93/0.0049
$\xi_x/\xi_y/\text{IP}$	0.118/0.083	0.029	0.029	0.0082/0.055	0.0075/0.054	0.0075/0.054
RF Phase (degree)	153.0	0.083	0.083	149	160.8	160.8
$V_{RF}(\text{GV})$	6.87	2.0	2.0	0.63	0.11	0.11
f_{RF} (MHz) (harmonic)	650	650	650	650 (217800)	650 (217800)	
<i>Nature</i> σ_{z} (mm)	2.14	2.72	2.72	3.8	3.93	3.93
Total σ_{z} (mm)	2.65	2.9	2.9	3.9	4.0	4.0
HOM power/cavity (kw)	3.6 (5cell)	0.75(2cell)	0.45(2cell)	1.0 (2cell)	1.6(1cell)	6.25(1cell)
Energy acceptance (%)	2	1.5	1.5			
Energy acceptance by RF (%)	6	1.8	1.8	1.5	1.1	1.1
Life time due to beamstrahlung_cal (minute)	47	52	52			
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.04	5.42	3.25	4.08	18.0	70.97

Physics Program

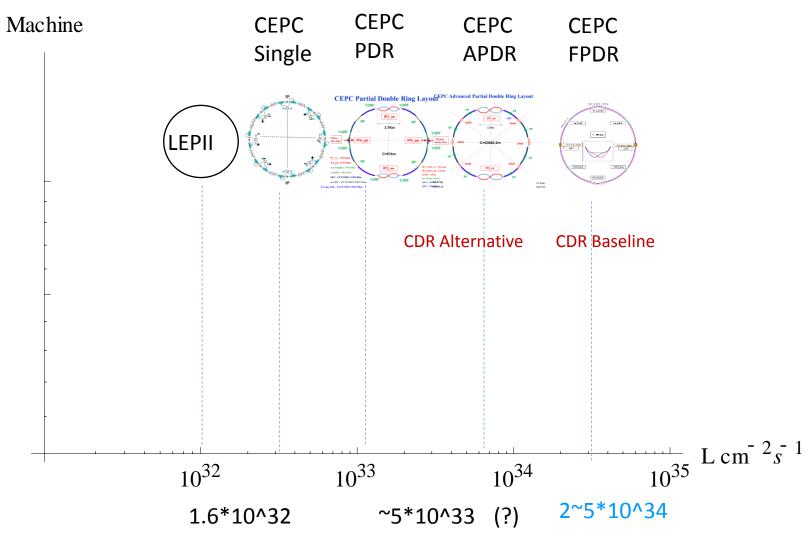
Deepen the understanding of the Higgs properties

31 July 2017

Project Timeline



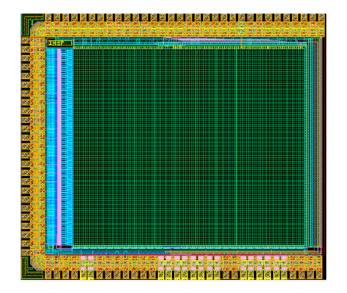
SppC

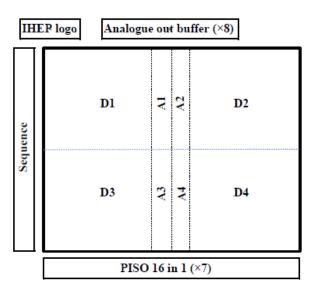

R&D program on High Temperature Superconducting magnets (HTS)

Machine Design Evolution

31 July 2017

Luminosity Potentials

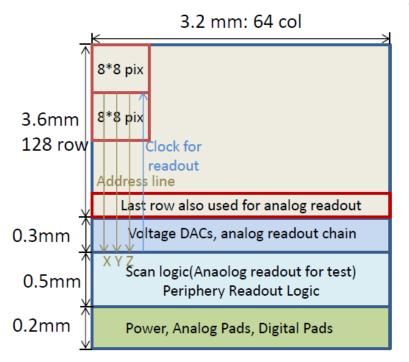

31 July 2017


Machine Parameters

	Pre-CDR	H-high lumi.	H-low power	W	Z	
Energy (GeV)	120	120	120	80	45.5	45.5
Circumference (km)	54	100	100	100	100	100
SR loss/turn (GeV)	3.1	1.67	1.67	0.33	0.034	0.034
N_e /bunch (10 ¹¹)	3.79	1.12	1.12	1.05	0.46	0.46
Bunch number	50	555	333	1000	16666	65716
SR power /beam (MW)	51.7	50	30	16.7	12.7	50
$\beta_{IP} x/y (m)$	0.8/0.0012	0.3/0.001	0.3/0.00 1	0.1/0.001	0.12/0.001	0.12/0.001
Emittance x/y (nm)	6.12/0.018	1.01/0.0031	1.01/0.0031	2.68/0.008	0.93/0.0049	0.93/0.0049
$\xi_x/\xi_y/\text{IP}$	0.118/0.083	0.029	0.029	0.0082/0.055	0.0075/0.054	0.0075/0.054
RF Phase (degree)	153.0	0.083	0.083	149	160.8	160.8
$V_{RF}(\text{GV})$	6.87	2.0	2.0	0.63	0.11	0.11
f_{RF} (MHz) (harmonic)	650	650	650	650 (217800)	650 (217800)	
<i>Nature</i> σ_{z} (mm)	2.14	2.72	2.72	3.8	3.93	3.93
Total σ_{z} (mm)	2.65	2.9	2.9	3.9	4.0	4.0
HOM power/cavity (kw)	3.6 (5cell)	0.75(2cell)	0.45(2cell)	1.0 (2cell)	1.6(1cell)	6.25(1cell)
Energy acceptance (%)	2	1.5	1.5			
Energy acceptance by RF (%)	6	1.8	1.8	1.5	1.1	1.1
Life time due to beamstrahlung_cal (minute)	47	52	52			
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.04	5.42	3.25	4.08	18.0	70.97

Rolling Shutter Readout

Yang ZHOU


 $-3 \times 3.3 \text{ mm}^2$;

- 96 \times 112 pixels with 8 sub-matrix
- Processing speed: 11.2 μs/frame for 100 ns/row;
- Output data speed: 160 MHz;
- Power:3.7 μ A/pixel;

31 July 2017

MIC4 Layout

Ping Yang

MPW submission in May 2017

MIC4 Chip:

- $3.2 \times 3.7 \text{ mm}^2;$
- -128×64 pixels
- Integration time $< 5 \ \mu s$
- Speed: 40 MHz/pixel
- Power: <80 mV/cm²;

Chip periphery:

- Band Gap
- Voltage DAC
- Current DAC
- LVDS
- Custom designed PADs