

US Effort in the Phase II Upgrade of the ATLAS Muon Spectrometer

Tom Schwarz University of Michigan

> DPF 2017 Fermilab

Muon Spectrometer Upgrade

Upgrades to the muon spectrometer are required to handle increased rates and fakes associated with HL-LHC luminosities (~ 7x10³⁴ cm⁻²s⁻¹)

Phase-1 Upgrade (LS2 ~ 2018): New Small Wheel

Phase-2 Upgrade (LS3 ~ 2023): Replace Tracking and Trigger Readout Electronics

Muon Spectrometer (r-z)

Muon Spectrometer (r-z)

Muon Spectrometer (r-z)

Example: Higgs $\rightarrow 4\mu$

US Scope: MDT Electronics and sMDT Detectors

US Scope: MDT Electronics and sMDT Detectors

BI Upgrade ➡ sMDT + RPC's

sMDT Detectors

sMDT Detectors

Preparing for Construction

sMDT assembly requires 2.5m x 2.5m granite table

Using FARO Laser Tracker - time of flight

precision machined ball.

measurement using laser retroflection from a

sMDT Assembly Dry Run

- Set up precision jigging on granite table
- Assemble prototype chamber with 'mock up' tubes
- Measure tube position precision

MDT Electronics in Phase II

Diagram of the proposed system architecture for the MDT trigger and readout is shown below (See TDR for more details).

- 1. TDC receives discriminated signals from three ASD's, creates a time stamp for leading and trailing edges, and forwards this information to the CSM.
- 2. CSM broadcasts hit timing information from up to 18 TDC's to the L0MDT board, and provides TTC information to the mezzanine cards.
- 3. Within the L0MDT, segment-finding and track-fitting algorithms are performed on reduced resolution hits for trigger processing. The full resolution hits are sent to FELIX if a L0 Accept signal is received.

MDT Electronics in Phase II

Chamber Service Module (CSM) ATLAS

- CSM broadcasts hit timing information from up to 18 TDC's to the L0MDT board, and provides TTC information to the mezzanine cards.
- Some Design Requirements:
 - Input bandwidth 18 Mezzanine Cards @ 320 Mbps per card using existing cables/ motherboards
 - Output bandwidth 3 fibers @ 4.8 Gbps per fiber
 - Optimize for minimal latency, low power consumption, and cost/risk
 - Work with old mezzanine cards

CSM Design Choices

FPGA-Based CSM

- Key component FPGA with enough I/O to handle all 18 mezzanine cards at 320 Mbps
- Tx which can send out data @ 4.8 Gbps on 3 fibers
- Generate calibration pulses, encoded reset, fan-out JTAG to mezzo
- Design Advantages
 - Flexibility in FPGA firmware
- Design Complications
 - Uncertainty about FPGA SEU performance in Phase II
 - Need to maintain firmware

GBTx-Based CSM

- Utilizes three GBTx chips one master and two slave.
- GBT-SCA will perform configuration and monitoring.
- Small service chip (asic) needed to interface with current mezzanine and fan out JTAG signals from GBT-SCA.
- Design Advantages
 - Low cost, low power, rad hard ASIC's from CERN
 - No firmware design/maintenance needed.
- Design Complications
 - Functionality fixed by GBTx chipset
 - Small additional chip needed for JTAG distribution

FPGA-based CSM Demonstrator

- Implementing FPGA-CSM in a Xilinx AC701 evaluation board.
- Used 'simulated' TDC signals to show very low error rate (BER < 7.8E-14) and measure latency (simulated = measured, 234 ns).
- Can interface the FPGA-CSM with a new hybrid mezzanine card (old ASD's w/ new TDC) which was built & tested by <u>Boston University</u>.
- Successfully interfaced three mezzanine with the new TDC to the FPGA-based CSM (we only have 3).

GBTx-based CSM Prototype v1

- Demonstrated running GBTx on VLDB evaluation board (top right picture).
 - Able to loop back data between GBTx and an FPGA with the GBT code.
 - Receive required 80/160/320 MHz clocks from GBTx clock manager.
- First prototype in development
 - Design utilizes three GBTx, one master and two slave (bottom right picture).
 - Service chip for JTAG distribution is an FPGA

GBTx-CSM prototype v1

GBTx-based CSM Prototype v1

Service Chip for GBTx-CSM

- Service ASIC is required for GBTx-based CSM to provide JTAG signals to the mezzanine and check if mezzanines are online and operational.
- Critical component for GBTx-based CSM.
- Project led by Michigan Postdoc Allison McCarn Deiana
- Firmware developed using an Artix-7 evaluation board
- Successfully identifying mezzanine cards
- Will be integrated into CSM prototype v1.

Allison McCarn Deiana

Summary

22

Backup

Getting to 3000 fb⁻¹

To cope with high rates at HL-LHC

The readout electronics of the MDT system must be replaced, as well as the barrel (RPC) and end-cap (TGC) triggering system.

To reduce fakes & improve trigger efficiency

- ➡ Integrate MDT info at Level-0 to improve p_T selectivity of tracks.
- To reduce fakes at high η (2 < |η| < 2.4), new sTGC's will be installed in the inner ring of the big wheel.
- RPC and sMDT chambers will replace current MDT chambers in the inner barrel to allow for a 3-station MDT trigger

Upgrading Readout Electronics

Readout electronics must be able to handle 300 kHz/tube hit rate and a 1 MHz trigger, which is <u>not possible in the</u> <u>current system.</u>

Muon Spectrometer Upgrade

Adding RPC/MDT detectors to the inner barrel will allow for three-station triggering. <u>This will improve trigger</u> <u>efficiency from 65 to 95% at</u> <u>the HL-LHC.</u>

Example: Higgs $\rightarrow 4\mu$

- ATLAS
- Precision measurements in all channels needed to study s<u>mall</u> differences in the rate of Higgs boson production.
- The measurement precision of the h→4µ rate is driven by statistics (event acceptance).
- Without the HL-LHC upgrade, we cannot handle the increased trigger rates, and therefore can't maintain the single muon p_T threshold of 20 GeV
- Raising the trigger threshold to 40 GeV, would decrease the h→4µ acceptance by factor of ~2.

Monitored Drift Tubes (MDT)

□ good space resolution (~100 µm per point) →

■ $\Delta p_t/p_t \approx 10\%$ @ $p_t \approx 1 TeV/c$

~1200 chambers / ~7000 m ²	BIL	BML	BOL
Tubes per layer	24 o 36	56	72
Layer per multilayer	4	3	3
Chamber lenght (mm)	1200	1680	2160
Chamber heigth (mm)	170	317	317

Monitored Drift Tubes (MDT)

FPGA-based CSM Design

- Design Advantages
 - Flexibility in FPGA firmware design for example, it will be easier to interface with any old mezzanine cards that cannot be replaced in Phase II
 - Can easily handle migration from Phase I triggered mode to phase II trigger-less
- Design Complications
 - Uncertainty about FPGA SEU performance in Phase II
 - Maintenance needed for firmware

GBTx-based CSM Design

- Based on three GBTx chips.
- Each GBTx chip:
 - Can utilize a maximum of 14 E-links at 320 Mbps.
 - 4.8 Gbps bi-directional output link.
 - Built-in clock manager.
- GBT-SCA will perform configuration and monitoring.
- Small service chip (asic) needed to interface with current mezzanine and fan out JTAG signals from GBT-SCA. Currently prototyping this with an FPGA.
- Design Advantages
 - Low cost, low power, radiation hard ASIC's from CERN
 - No firmware design/maintenance needed.
- Design Complications
 - Functionality fixed by GBTx chipset
 - Small additional chip needed for JTAG distribution

GBTx-based CSM conceptual design

GBTx-based CSM Prototype v1

• Master GBTx:

- Connected to VTRx. Responsible for 1
 downlink (control) and 1 uplink (readout).
- EC channel + 80 E-link connected with GBT-SCA.
- Recover clock through downlink and distribute it to slave GBTx.
- Two Slave GBTx:
 - Connected with VTTx. Responsible for 2 uplinks (transmitter mode).
 - Controlled by the GBT-SCA I2C master serial bus.
- Four GBT-SCA:
 - Controlled via Master GBTx by 80 Mbps Elinks.
 - Configures GBTx via I2C channels.
 - Monitoring all temperature, voltage information from 18 mezzanines.
- Service FPGA: JTAG fanout for Mezzanine and generates calibration pulses. Performs encoded reset.
- Power: FEAST ASIC Chips

GBTx-CSM prototype v1

Predicting Latency for the FE

•	Adding worst case latency for each
	component

- A TDC multiplexer cut at 14 ticks gives 0.5% hit loss at 400 kHz/tube
- Deadtime cut at 800ns in 30mm tubes gives 24% hit loss at 400 kHz/tube
- * NOTE: GBT latency quoted in 2013 presentation is 254 ns but includes receiver time in FPGA - we assume this is roughly 90 ns and moved it from the GBTx CSM fixed latency to deserialization after the fiber.

Source	Latency (ns)
Flight Time to front-end	65
Drift Time + tube propagation	747.5
ASD shaping + discriminator	50
Loss in TDC multiplexer (cut less than 14 ticks)	350
Transmission along Mezzanine Cables	20
GBTx CSM (fixed latency)*	164
Wait for 4 frames from GBTx	100
Frame synchronization to local clock	25
Serialization to Fiber	50
Transmission along optical fiber	767
Deserialization from fiber	90
Total	2428.5

CSM Demonstrator Plan

On track to have both demonstrators evaluated by the end of October.