Broader Use of Simplified Limits on Resonances at the LHC

Elizabeth H. Simmons
Michigan State University
August 2, 2017

with R.S. Chivukula, P. Ittisamai, and K.A. Mohan

Phys. Rev. 94 (2016) 094029
and arXiv:1707.01080
The Usual Suspects: Dijet Resonances

How to represent a broader class of models?
s-channel Resonance

If you can see it, can you tell what it is?
Simplified s-channel Model

- **Resonance** characteristics:
 - Couplings
 - Mass, width
 - Spin

- **Corresponding observables**:
 - BR, $\sigma \ast BR$
 - $d\sigma/dm_{ab}$
 - $d\sigma/d\cos\theta_{ab}$
 - Flavor tagging; jet substructure
 - Event properties

NB: If x,y can be light quarks, t-channel process may be relevant.
Narrow Width Approximation

\[
\sigma_R(pp \rightarrow x + y) = \int_{s_{min}}^{s_{max}} d\hat{s} \hat{\sigma}(\hat{s}) \cdot \left[\frac{dL^{ij}_{\hat{s}}}{d\hat{s}} \right]
\]

\[
\hat{\sigma}_{ij \rightarrow \hat{R} \rightarrow xy}(\hat{s}) = 16\pi(1 + \delta_{ij}) \cdot \mathcal{N} \cdot \frac{\Gamma(R \rightarrow i + j) \cdot \Gamma(R \rightarrow x + y)}{(\hat{s} - m_R^2)^2 + m_R^2 \Gamma_R^2}.
\]

\[
\frac{1}{(\hat{s} - m_R^2)^2 + m_R^2 \Gamma_R^2} \approx \frac{\pi}{m_R \Gamma_R} \delta(\hat{s} - m_R^2)
\]

\[
\sigma_R(pp \rightarrow x + y) = 16\pi^2 \cdot \mathcal{N} \cdot \frac{\Gamma_R}{m_R} \cdot (1 + \delta_{ij}) BR(R \rightarrow ij) \cdot BR(R \rightarrow xy) \left[\frac{1}{s} \frac{dL^{ij}}{d\tau} \right]_{\tau = \frac{m_R^2}{s}}
\]

(Note: Can be corrected for K-factor(s) & Acceptance)
Branching Ratios

\[\sigma_R(\text{pp} \to x + y) = 16\pi^2 \cdot \mathcal{N} \cdot \frac{\Gamma_R}{m_R} \cdot (1 + \delta_{ij}) \cdot \text{BR}(R \to ij) \cdot \text{BR}(R \to xy) \cdot \left[\frac{1}{s} \frac{dL_{ij}}{d\tau} \right]_{\tau = \frac{m_R^2}{s}} \]

Simplest case: one relevant incoming / outgoing state

\[\text{BR}(R \to i + j)(1 + \delta_{ij}) \cdot \text{BR}(R \to x + y) = \frac{\sigma_{xy}^R}{16\pi^2 \mathcal{N} \frac{\Gamma_R}{m_R} \left[\frac{1}{s} \frac{dL_{ij}}{d\tau} \right]_{\tau = \frac{m_R^2}{s}}} \]

\[\leq 1/4 \quad (ij \to R \to xy) \]
\[\leq 1 \quad (ij \to R \to ij) \]
\[\leq 1/2 \quad (ii \to R \to xy) \]
\[\leq 2 \quad (ii \to R \to ii) \]

Upper bound on product of BR shows which classes of models are viable.
Better Variable: ζ

$$\sigma_R(pp \to x + y) = 16\pi^2 \cdot \mathcal{N} \cdot \frac{\Gamma_R}{m_R} \cdot (1 + \delta_{ij}) BR(R \to ij) \cdot BR(R \to xy) \left[\frac{1}{s} \frac{dL^{ij}}{d\tau} \right]_{\tau = \frac{m_R^2}{s}}$$

Simplest case: one relevant incoming / outgoing state

$$\zeta \equiv (1 + \delta_{ij}) BR(R \to i + j) \cdot BR(R \to x + y) \cdot \frac{\Gamma_R}{m_R}$$

$$= \frac{\sigma^{XY}}{16\pi^2 \cdot \mathcal{N}} \times \left[\left[\frac{1}{s} \frac{dL^{ij}}{d\tau} \right]_{\tau = \frac{m_R^2}{s}} \right]$$

- Collapses different widths onto a single curve
- For upper bound, use $\Gamma/M \sim 0.1$
In this paper we have summarized the experimental situation of the alleged diboson excess around 1-100 fb seen by the LHC. We have provided a thorough analysis of the data and interpretations that necessarily imply the existence of new resonance(s) and an extension beyond the standard model.

Spin-1 triplets (V^+, V^0)

<table>
<thead>
<tr>
<th>Prod.</th>
<th>WW</th>
<th>ZZ</th>
<th>WZ</th>
<th>WH</th>
<th>ZH</th>
<th>Z±</th>
<th>gg</th>
<th>hh</th>
<th>QfQf</th>
<th>ff</th>
<th>X</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>✓</td>
<td>[39, 140-142]</td>
</tr>
<tr>
<td>DY</td>
<td>✓</td>
<td>[40, 42, 43, 111]</td>
</tr>
<tr>
<td>DY</td>
<td>✓</td>
<td>[41]</td>
</tr>
<tr>
<td>DY</td>
<td>✓</td>
<td>[45, 46, 85, 91]</td>
</tr>
<tr>
<td>DY</td>
<td>✓</td>
<td>[112]</td>
</tr>
</tbody>
</table>

Spin-1 V^0

<table>
<thead>
<tr>
<th>Prod.</th>
<th>WW</th>
<th>ZZ</th>
<th>WZ</th>
<th>WH</th>
<th>ZH</th>
<th>Z±</th>
<th>gg</th>
<th>hh</th>
<th>QfQf</th>
<th>ff</th>
<th>X</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>✓</td>
<td>[84]</td>
</tr>
<tr>
<td>DY</td>
<td>✓</td>
<td>[117]</td>
</tr>
<tr>
<td>DY</td>
<td>✓</td>
<td>[118]</td>
</tr>
</tbody>
</table>

Spin-1 $V^±$

<table>
<thead>
<tr>
<th>Prod.</th>
<th>WW</th>
<th>ZZ</th>
<th>WZ</th>
<th>WH</th>
<th>ZH</th>
<th>Z±</th>
<th>gg</th>
<th>hh</th>
<th>QfQf</th>
<th>ff</th>
<th>X</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>✓</td>
<td>[86, 90, 92-94]</td>
</tr>
<tr>
<td>DY</td>
<td>✓</td>
<td>[87, 88]</td>
</tr>
</tbody>
</table>

Scalar

<table>
<thead>
<tr>
<th>Prod.</th>
<th>WW</th>
<th>ZZ</th>
<th>WZ</th>
<th>WH</th>
<th>ZH</th>
<th>Z±</th>
<th>gg</th>
<th>hh</th>
<th>QfQf</th>
<th>ff</th>
<th>X</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>gg</td>
<td>✓</td>
<td>[75, 131, 143]</td>
</tr>
<tr>
<td>gg</td>
<td>✓</td>
<td>[73]</td>
</tr>
<tr>
<td>gg</td>
<td>✓</td>
<td>[141]</td>
</tr>
<tr>
<td>qq</td>
<td>✓</td>
<td>[123-125]</td>
</tr>
</tbody>
</table>

Unconventional

- Torsion-free Einstein-Cartan theory
- Tri-boson interpretation: $pp \rightarrow RV \rightarrow VV'X$
- Implications in other observables (direct and indirect)

[95, 97, 142, 145-148]

[Next to leading order predictions]

[148]

[Analysis techniques]

[102, 106, 139, 150]

Les Houches Pre-Proceeding 2015

The Diboson Excess: Experimental Situation and Classification of Experiments

arXiv:1512.04537
DiBoson Vector Resonances

ATLAS 95% c.l. upper bounds from 20.3 fb$^{-1}$ at 8 TeV

JHEP 12, 055 (2015)

In shaded region, ζ has physically allowed value

Extended Gauge Model would not explain excess
Multiple Production and Decay Modes

\[
\zeta \equiv \sum_{i' j'} (1 + \delta_{i' j'}) \text{BR}(R \to i' + j') \left[\sum_{x y \in XY} \text{BR}(R \to x + y) \right] \cdot \frac{\Gamma_R}{m_R}
\]

\[
= \frac{\sigma_{XY}^R}{16\pi^2 \cdot N} \times \sum_{i, j} \omega_{i, j} \left[\frac{1}{s} \frac{dL_{ij}}{d\tau} \right]_{\tau=\frac{m_R^2}{s}}
\]

weighting factor

\[
\omega_{i, j} = \frac{(1 + \delta_{i j}) \text{BR}(R \to i + j)}{\sum_{i' j'} (1 + \delta_{i' j'}) \text{BR}(R \to i' + j')}
\]
Vector Resonance in Dilepton Channel

ATLAS 95% c.l. upper bounds from 3.2 fb$^{-1}$ at 13 TeV

ATLAS-CONF-2015-070

Band indicates range between Resonances (R) coupling only to up-type quarks vs. only to down-type quarks

Sequential SM Z' is excluded below ~3.5 TeV
Leptophobic Vector Resonance in Dijets

ATLAS 95% c.l. upper bounds from 3.6 fb\(^{-1}\) at 13 TeV

ATLAS 95% c.l. upper bounds from 3.2 fb\(^{-1}\) at 13 TeV

band indicates range between Resonances (R) coupling only to up-type vs. only to down-type quarks

data doesn't constrain high-mass region
Simplified Limits
on s-channel resonances, framed as bounds on

\[\zeta = BR_i \cdot BR_f \cdot \frac{\Gamma}{M} \]

highlight relevant production channels for a newly observed narrow resonance.
Limits on finite-width resonances

ATLAS

\[\sigma \times A \times \text{BR} \] [pb]

Expected ± 1 σ and ± 2 σ

Obs. 95% CL upper limit for:

- \(\sigma_G/m_G = 0.15 \)
- \(\sigma_G/m_G = 0.10 \)
- \(\sigma_G/m_G = 0.07 \)
- \(\sigma_G/m_G = 0.03 \)
- \(\sigma_G/m_G = 0 \)

\(|y^*| < 0.6\)

\(\sqrt{s} = 13 \) TeV, 37.0 fb\(^{-1} \)
Breit-Wigner Approximation

\[
\sigma_R(pp \rightarrow x + y) = \int_{s_{\text{min}}}^{s_{\text{max}}} d\hat{s} \, \hat{\sigma}(\hat{s}) \cdot \left[\frac{dL_{ij}}{d\hat{s}} \right]
\]

\[
\hat{\sigma}(\hat{s})_{ij \rightarrow R \rightarrow xy} \equiv \frac{\Gamma_R^2}{m_R^2 \cdot m_R^4} \cdot \frac{\hat{s}}{m_R^4} \cdot 16\pi N (1 + \delta_{ij}) \cdot BR(R \rightarrow i + j) \cdot BR(R \rightarrow x + y) \cdot \left(\frac{\hat{s}}{m_R^2} - 1 \right)^2 + \frac{\Gamma_R^2}{m_R^2}
\]

(includes main impact of s-dependent widths)
Color-octet scalar in dijets

\[\zeta \equiv (1 + \delta_{ij}) \text{BR}(R \to i + j) \cdot \text{BR}(R \to x + y) \cdot \frac{\Gamma_R}{m_R} \]

\[= \frac{\sigma_{R}^{XY}}{16\pi^2 \cdot \mathcal{N} \times \left[\frac{1}{s} \frac{dL_{ij}^{ij}}{d\tau} \right]_{\tau = \frac{m_{sR}^2}{s}}} \]

Breit-Wigner \(\Gamma/M = 0.3 \)

red curves are CMS 95% c.l. upper bounds from 19.7 fb\(^{-1}\) at 8 TeV

Vector resonance in dileptons

Breit-Wigner \(\Gamma / M = 0.03 \)

Breit-Wigner \(\Gamma / M = 0.3 \)

ATLAS 95\% c.l. upper bounds from 13.3 fb\(^{-1}\) at 13 TeV

ATLAS-CONF-2016-045
Simplified Limits readily extend to finite-width resonances.

The corresponding bound from the narrow-width approximation is generally a conservative estimate of the strength of the limit.
Benefits of Simplified Limits approach

• focus on model classes ↔ production mechanisms

• easily identify
 • exclusion limits on BSM resonances
 • whether data constrains a given channel
 • classes of models relevant for a given excess
 • [specific theories consistent with an excess]

• \(\zeta \) derives directly from model parameters
• works for narrow or finite-width resonances

If collaborations report results in terms of \(\zeta \), as well as \(\sigma^*BR \), it will speed and deepen our understanding of new findings.
Low-energy tail of broad peaks