Implementation and first results for ProtoDune SP

Elzbieta Nowak, Paola Sala, CERN Neutrino Platform

The ProtoDUNE warm cryostat - FLUKA model

- Dimensions: 11.404 x10.756x11.404 m3 (WxHxL)
- IPE beam profiles: small and large
 - 304 L Stainless steel (8000kg/m3)
- 0.8 m space between the closest proficient
- 1.6 m between large profiles
- Internal space (insulation limit):8.548x7.9x8.548 m3

Ref. drawing: CENDUNCR0017 (2016/02/17) 2

The ProtoDUNE - BEAMS

Ref. drawing: PARTICLES BEAMS/ ST0743852 03

The ProtoDUNE detector - internal structure

- Active LAr : 7.2 mx5.9mx7m (WxHxL)
- LAr volume (active and inactive region) 8.548x7.9x8.548 m3
- APAs + Cathode + field cage are inside
- Modular internal structure- can be expanded INSULATION (0.8 m)
 - From internal part (Ar)
 - 1.2 mm thick SS membrane (8000 kg/m3)
 - 1.2 cm plywood layer (700 kg/m3)
 - 37.54 cm of polyurethane foam (90 kg/m3)
 - 2 layers of plywood, 2.4 cm in total
 - Secondary SS membrane 0.2mm
 - 37.54 cm of polyurethane foam
 - 1.2 cm of plywood
 - External SS membrane 1cm thick

The ProtoDUNE beam penetration

Beam 1

Preliminary studies of the energy deposited in the LAr detector (ongoing)

- EM and hadronic components of the total deposited energy for protons, pions, kaons
- Energy deposited with recombination (quenching) correction as a function of particle momentum
- Energy deposited density (2D maps)
- Drift time cut above 3 ms
- Full simulation, no reconstruction. Quantities are "true" deposited or deposited and quenched energy

Mean energy deposited in the active LAr detector (quenched)

Interacting particles only Quenching according to Icarus

Hints of non-linearity, No hint of non-containment.

EM component

Fraction of the total energy deposited, quenched, in the active LAr that goes into EM component Differences among projectiles --- Quenching correction ---

Total energy to quenched total energy ratio Interacting particles

--- Quenching correction for the EM component

EM energy to Quenched EM energy ratio

Resolution

Rms (%) of energy deposition. Left : no quenching, right: with quenching

Quenching MUST be corrected back, also will need differenr EM-had calibrations, as expected

Effect of E-field variations on quenching

Electron beam

"Energy deposition maps

Energy deposited density - electrons

Thoughts on requirements:

From proposal requirement table:

Protons	from 0.7 GeV/c
Pions+-	from 0.2 GeV/c
Electrons	from 0.2 GeV/c
Kaons+	from 1 GeV/c

Do we really need these low energies? And can we get them?

In the following a few ideas, also based on full FLUKA simulations in the full ProtoDUNE detector geometry

Protons: was 0.7 GeV/c

- We need interacting and stopping particles.
- For stopping, the "initial "energy has small meaning
- At 1 GeV/c, still 35% of protons do stop. (only 5 per mill at 2 GeV/c) AND, 1 GeV/c the protons interact at all energies, from max down to "zero":

Pions: was 0.2 GeV/c

- Need interactions, decay, decay-at-rest (for quenching meas.)
- Pions decay along the beamline
- For a 37m beam line, at 0.2 GeV/c only 4% of the π reach the detector
- The fraction of (stopping π)/(from target π) is 2% at p=0.2, 1.3% at p=0.7. (To be selected from many more interacting π)
- As for protons, there are still interactions all the way from Emax to zero.
- → consider having pions above p≈0.7GeV/c as first priority ?

Kaons: was 1GeV

- And one would like to have.. But...no hope below 2 ≈GeV/c or more
- There will be no decay at rest
- And only "high" energy interactions

Electrons: was 0.2 GeV/c

- At low energy, topology is different from standard shower
- Would like to check ID and reco

Icarus T600 2.1 GeV electron

Real data, atm nu events , from SPSC presentation

Icarus T600 0.2 GeV electron

• main argument to keep low material budget

Low energy electrons

0.2 GeV/c electrons 0.35 0.1948 Mean RMS 0.4002E-02 0.3 0.25 Deposited E 0.2 0.15 0.1 0.05 0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195 0 2 E_{deposited} (GeV)

Signal from 0.2 GeV/c electrons Black line: no materials in the beam line, only the beam window → fine

Other colors: different materials in the beam line.. Red: with spectrometer Green: with spectrometer and tof

can spoil or destroy the signal

Conclusion

- ProtoDUNE full FLUKA simulation ready
- For the moment, derive basic quantities from MC without reconstruction
- Useful to understand general features, and for the optimization of the beamline