Hadronic containment in a Liquid Argon test beam

Pawel Guzowski

University of Manchester

The University of Manchester

Outline

- Definition of containment
- Treatment of neutrons
- Pion containment
- Proton containment
- π^{o} containment

Introduction

- Presented here is a study I performed for the LArIAT Phase 2 proposal
- This study was performed >3 years ago
 Apologies if my memory is a bit hazy
- The goal was to study hadronic containment, to influence the design of the detector, specifically the dimensions required
- The study was performed with LarSoft version "S2012.05.09"

Quantifying containment

- Fire hadrons at an expanded microboone detector simulation (double width & double height)
- Determine what fraction of total energy deposit is contained inside cylinder (r,z) around particle axis
 - Numerically: (Sum of energy in cylinder) / (Total energy in whole detector)

Relatively poor containment due to neutrons

Strategy for neutrons

- Three strategies available for dealing with neutrons
 - 1. Ignore them completely
 - 2. Have a KE cut
 - 3. Have a time cut
 - 4. Noise floor not simulated
- Probably a combination of 2&3 is the best

Ignoring neutrons

Pawel Guzowski - ProtoDUNE workshop

Neutron KE cuts

• Ignore hits produced by neutrons below KE thresh

Neutron time cuts

- Geant4 has a default neutron tracking time cut of 10µs
- However neutron times extend up to 120µs

MC energy deposit times (1GeV pions)

Effects of time cut

• Ignore hits produced by neutrons after time thresh

(Apologies for poor statistics, as these had to be regenerated after altering GEANT4)

Handling neutrons

- These neutron hits are in theory reconstructable.
 - Without a good handle on t_o, how much use are they?
- Do you really want these neutron hits to be a significant input to deciding the size of the detector?
- Remainder of the plots in this presentation are with neutrons hits removed.

Pions

- 0–2 GeV/c momentum range
- These plots ignore neutrons
 - Neutron-inclusive plots in backups for comparison
 - But for quick reference, at 75cm radius:
 - ~5% fully contained 1 GeV/c pions
 - ~85% mean containment for 1GeV/c pions

Mean transverse containment

Mean longitudinal containment

≥99% Transverse Containment

≥99% Longitudinal Containment

≥95% Transverse Containment

≥95% Longitudinal Containment

Protons

- 0–2 GeV/c momentum range
- These plots ignore neutrons
 - Neutron-inclusive plots in backups for comparison
 - But for quick reference, at 75cm radius:
 - ~50% fully contained 1 GeV/c protons
 - ~95% mean containment for 1GeV/c protons

Mean transverse containment

Mean longitudinal containment

≥99% Transverse Containment

≥99% Longitudinal Containment

≥95% Transverse Containment

≥95% Longitudinal Containment

Secondary $\pi^{o}s$

- Following the removal of neutrons from the event, the next most significant effect limiting the containment of hadrons is the production of secondary $\pi^{o}s$
- If these decay transversely, the photons are rarely fully contained within ~75cm.

Secondary π^{o} kinematics

MANCHESTER 1824

The University of Manchester

Mean transverse containment

MANCHESTER 1824 The University of Manchester

Mean longitudinal containment

≥99% Transverse Containment

≥99% Longitudinal Containment

≥95% Transverse Containment

≥95% Longitudinal Containment

Summary

- These plots will hopefully be a good start for understanding the containment of hadronic showers in protoDUNE
- Containment is limited by pions, protons and secondary $\pi^{o}s$ (when neutrons are ignored)
- Muons, electrons etc are relatively well contained, compared to these

BACKUPS

Effects of reconstruction on containment

- Using reconstruction information to refine containment studies
 - Only use those energy deposits that end up in
 - Cheater hits
 - Uses MC truth
 - Reconstructed hits
 - Gaussian hit finder
 - Reconstructed clusters
 - DB scan

Mean containment

Mean transverse containment

• Using reconstruction info doesn't add much to the containment study

Mean longitudinal containment

MANCHESTER 1824 The University of Manchester

Full containment

≥99% Transverse Containment

• Using reconstruction info doesn't add much to the containment study

Mean transverse containment

MANCHESTER 1824 The University of Manchester

Mean longitudinal containment

≥99% Transverse Containment

≥99% Longitudinal Containment

≥95% Transverse Containment

MANCHESTER 1824 The University of Manchester

≥95% Longitudinal Containment

Mean transverse containment

MANCHESTER 1824 The University of Manchester

Mean longitudinal containment

≥99% Transverse Containment

≥99% Longitudinal Containment

≥95% Transverse Containment

MANCHESTER 1824 The University of Manchester

≥95% Longitudinal Containment

