Needs from NDK/Atmospheric Physics point of view

Michel Sorel

On behalf of the DUNE NDK/Atmospheric/Cosmogenic Physics WGs

ProtoDUNEs Science Workshop

28-30 June 2016, CERN

Workshop goals From the Indico page

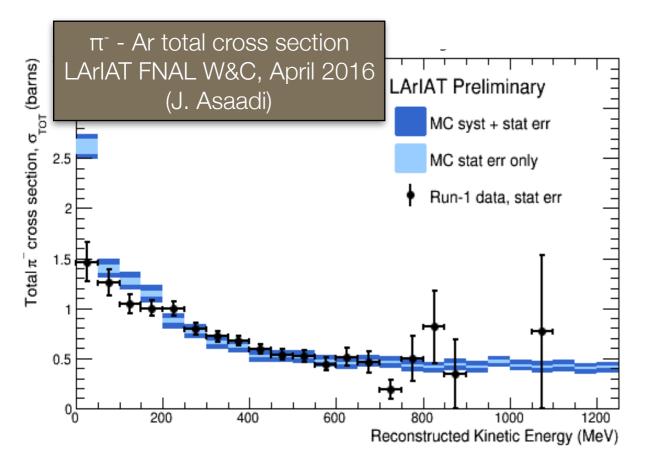
The workshop goals are to:

- provide well-defined parameters of the beam (particle types, rates, momentum resolution, PID) to execute a successful measurement programme
- identify a prioritized list of measurements and analyses and a plan to develop the required tools and analysis algorithms
- define and discuss benchmark measurements to evaluate the detector performance

 This talk aims to contribute to these goals, from the perspective of Nucleon Decay and Atmospheric Neutrino Physics at DUNE

ProtoDUNEs measurements for Nucleon Decay Physics

NDK searches: where do pDUNEs measurements enter?

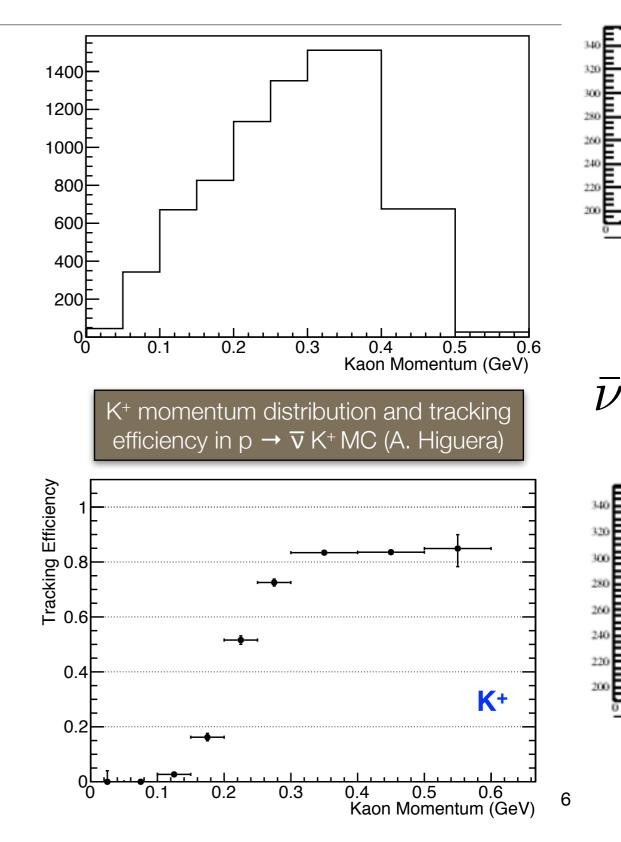

$\tau/B = n_{p/n} \cdot \epsilon \cdot Mt / (N_{obs} - N_{bgr})$

- n_{p/n}: number of p or n per unit mass [1 / kton]
- ε: signal detection efficiency [1]
- Mt: detector exposure [kton·yr]
- **N_{obs}-N_{bgr}**: (upper limit on) number of signal events [1]
- τ/B: (lower limit on) partial lifetime sensitivity [yr]
- ProtoDUNE measurements will affect ε , N_{bgr} estimates through:
 - $\cdot\,\pi\text{-}Ar$ and K-Ar cross section measurements
 - Track/shower reconstruction performance
 - Particle ID performance

ProtoDUNE data may also permit to refine NDK event selection in a LAr-TPC

K[±]-Ar and π^{\pm} -Ar cross section measurements

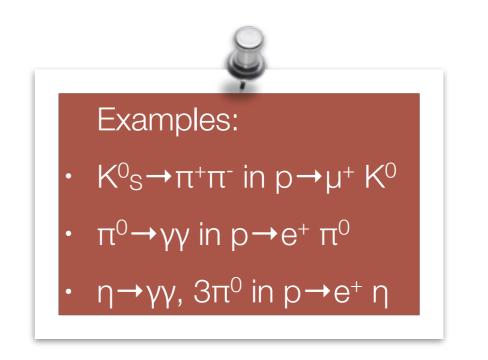
- Tune hadron-nucleus interaction models in NDK generator (GENIE) and detector simulation (Geant4)
 - Understand irreducible signal efficiency losses, affect background rates
- Not just total cross sections, but **exclusive** measurements needed
 - absorption, charge exchange, inelastic, elastic
- Particularly interested in 0.1-0.5 GeV/c incident meson momenta
 - Caveat: LArIAT is a better match in momentum for this

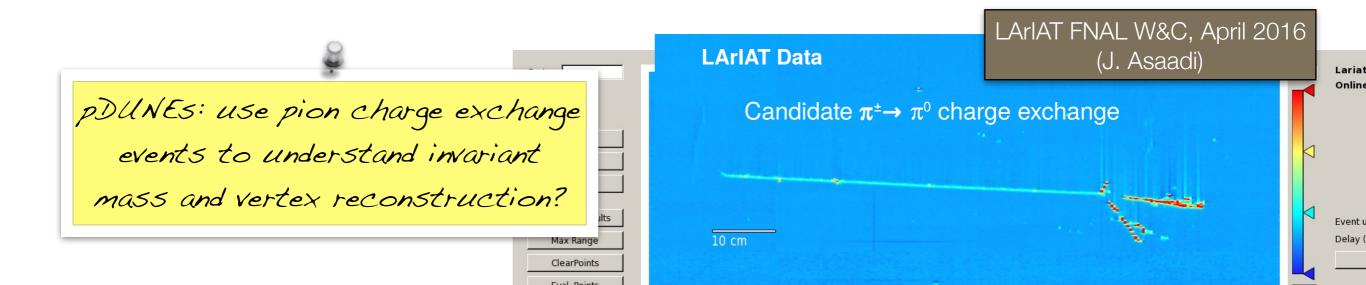

pDUNES: need measurement of lowmomentum K^{\pm} -Ar and π^{\pm} -Ar cross sections. Cross-check LArIAT

Track/shower reconstruction performance

Single-particle reconstruction efficiencies, resolutions

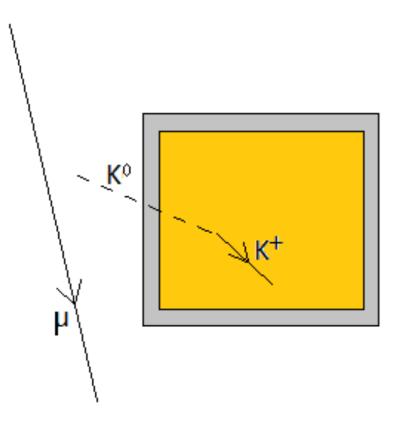
- Single-particle momentum/angular resolutions not so important, considering nuclear Fermi motion
- Single-track efficiencies very useful to validate

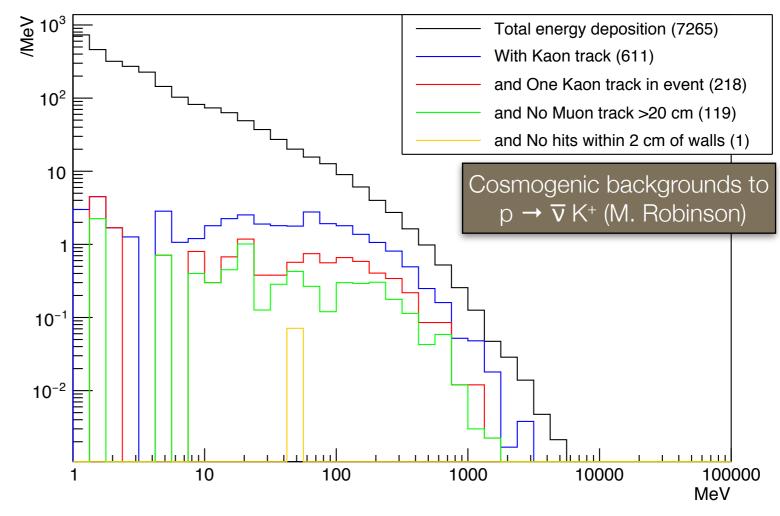

pDUNES: measure single-particle reconstruction efficiencies in LAr-TPC as similar as possible to DUNE FD



Track/shower reconstruction performance

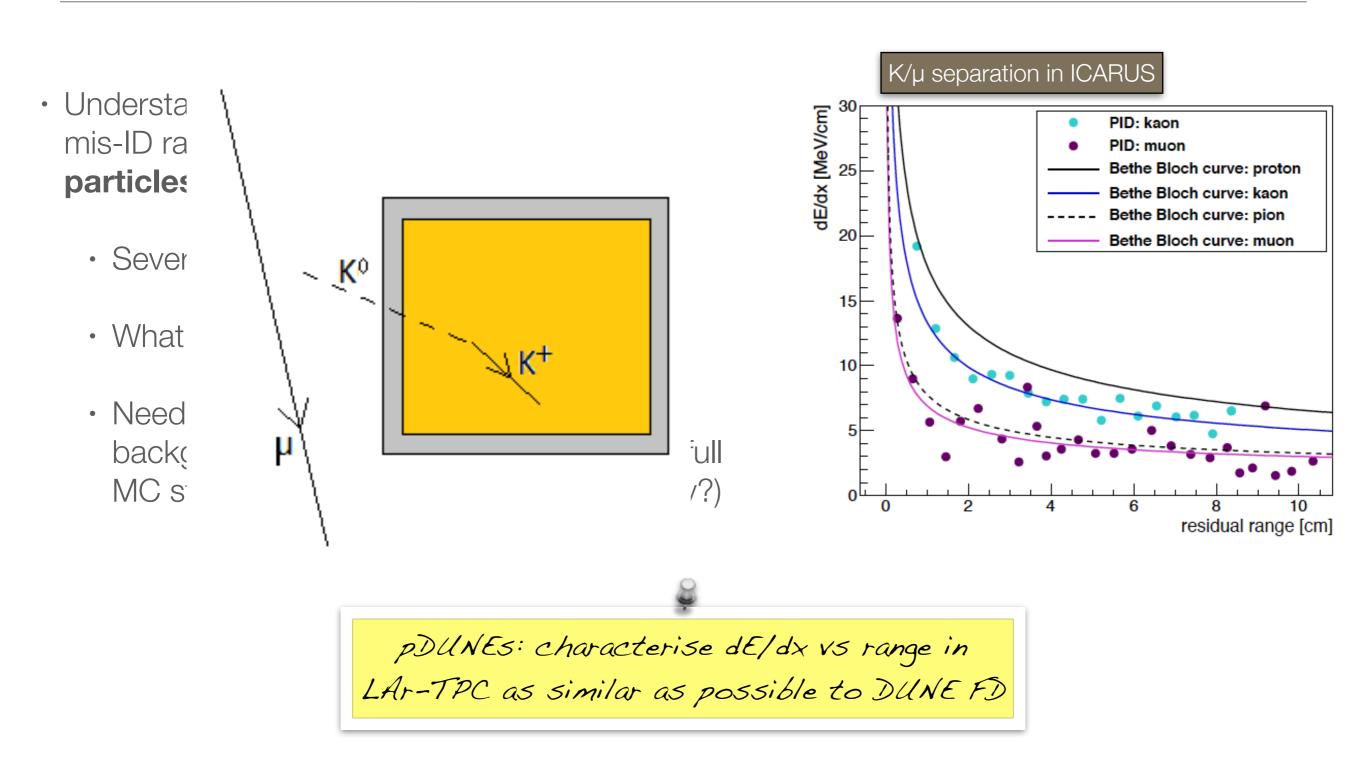
"Multi-particle" reconstruction for NDK signal


- "Multi-particle reco": reconstruction of observables involving multiple particles
 - Examples: invariant mass of 2-body system, decay vertex position
- Invariant mass and vertex reconstruction important, since many NDK searches involve reconstructing decays of neutral particles
- Vertex/position resolution also needed to quantify signal efficiency due to fiducial requirement



Track/shower reconstruction performance Cosmogenic background to NDK

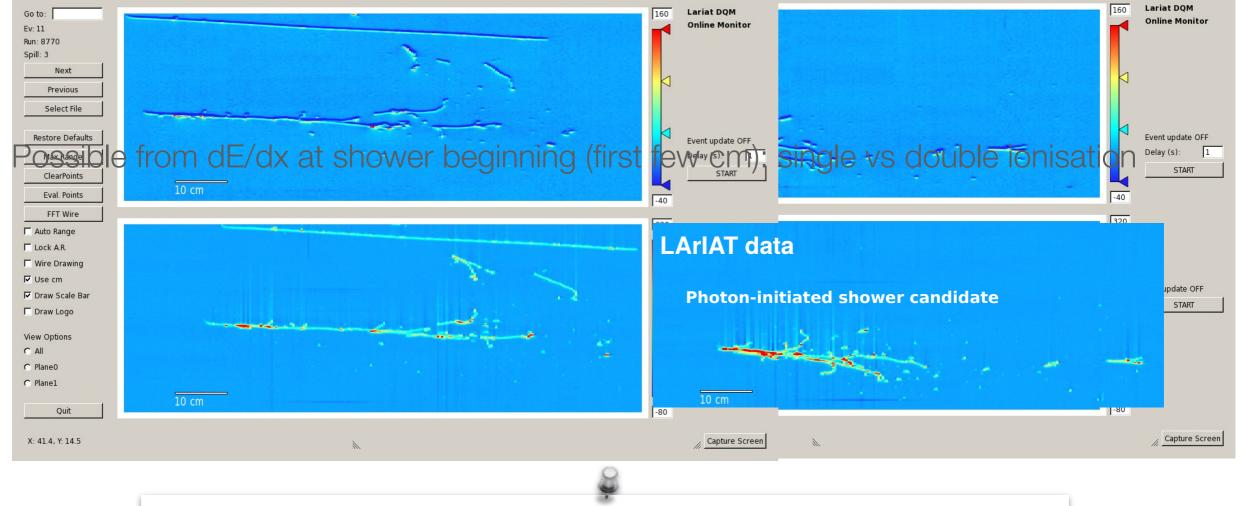
• Understanding position resolution also important to suppress cosmogenic backgrounds



Charged Kaon Spectrum, 10⁸ filtered muons

Particle ID performance

dE/dx of stopping particles



Particle ID performance

 e/γ separation

 \cdot e/γ separation also important, since many NDK searches involve electrons and

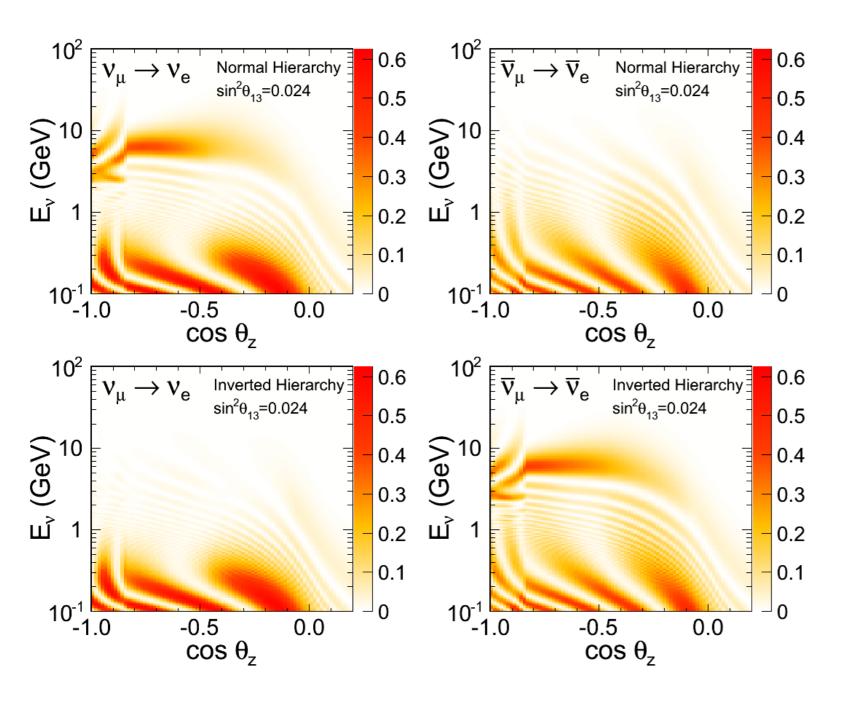
pDUNES: measure e/y separation performance. Photoninitiated showers from electron bremsstrahlung events?

Prioritized list of pDUNEs measurements for NDK physics *For discussion*

1.Particle ID performance

- PID from dE/dx of stopping particles. Full $e/\mu/\pi/K/p$ separation
- e/γ separation
- Muon charge sign

2.Track/shower reconstruction performance


- Single-particle reconstruction efficiency
- Decay vertex reconstruction
- Invariant mass in neutral particles' decays

$3.\pi^{\pm}-Ar$ and $K^{\pm}-Ar$ cross section measurements

• Few 100 MeV kinetic energies

ProtoDUNEs measurements for Atmospheric Neutrino Physics

Atmospheric measurements: $v_{\mu} \rightarrow v_{e}$ channel

Goal: measurement of MH and other oscillation parameters

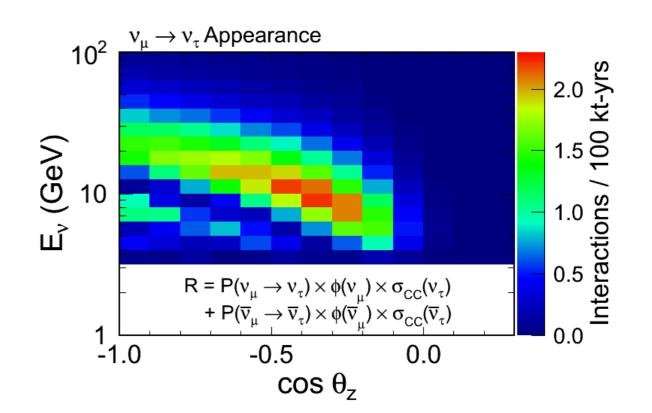
Neutrino is reconstructed as lepton plus hadronic system as a whole

Need to measure at least:

- lepton flavor = e
- energy (e + h)
- direction (e + h)

Atmospheric measurements: $v_{\mu} \rightarrow v_{\mu}$ and $v_{\mu} \rightarrow v_{\tau}$ channels

 $\begin{array}{c}
10^{2} \\
 & \nu_{\mu} \rightarrow \nu_{\mu} \\
 & 0.8 \\
 & 0.6 \\
 & 0.6 \\
 & 0.4 \\
 & 0.2 \\
 & 10^{-1}_{-1.0} \\
 & 0.5 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\
 & 0.0 \\$

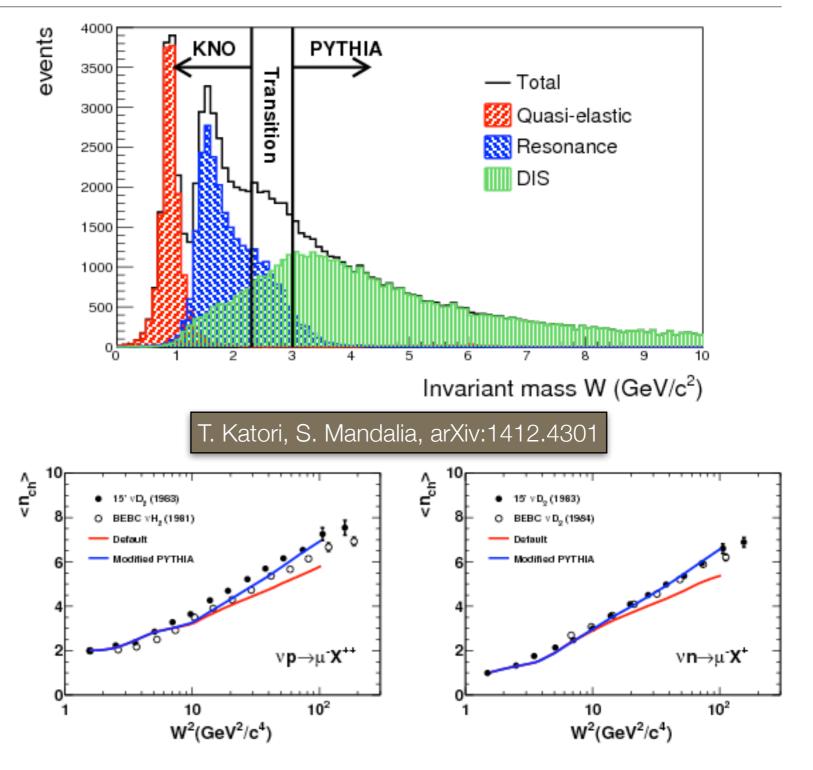

 v_{μ} disappearance

Goal: measurement of MH and other oscillation parameters, test of flux models

Need to measure at least:

- lepton flavor = μ
- energy $(\mu + h)$
- direction (μ + h)

v_{τ} appearance


Goal: unitarity tests

Need to measure at least (focus on inclusive hadronic channels):

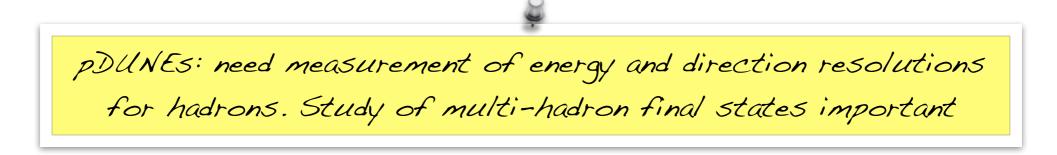
- π[±] ID
- energy
- direction

Hadron multiplicities in atmospheric neutrinos

 Invariant mass distribution from atmospheric neutrino flux

 1-5 hadrons in final state typically expected

Detector performance assumptions From Ibne-doc-7184


Angular Resolution	Electron	1 deg
	Muon	1 deg
	Hadronic System	10 deg
Energy resolution	Stopping muon	3%
	Exiting muon	15%
	Electron	1%/√E + 1%
	Hadronic system	30%/√E
Signal Acceptance	Electrons	90%
	Muons	100%
Background rejection	e-like (π ⁰ , γ)	95%
	μ-like (π⁺, π⁻)	99%

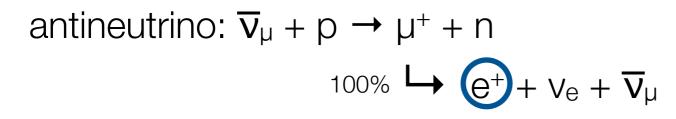
MH sensitivity versus detector performance *From Ibne-doc-7039*

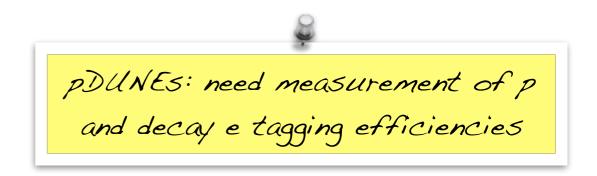
DPA	Nominal	Better Angular Resolutions	Better Energy Resolutions	Improved FCE	Improved FCMU	Improved PCMU	Improved Hadrons
Nu/Nubar separation	None	None	None	None	None	None	None
Muon Energy	15% exiting 3% contained	15% exiting 3%contained	7.5% exiting 1.5% containd	15% exiting 1.5% containd	15% exiting 1.5% containd	7.5% exiting 3% contained	15% exiting 3% contained
EM shower energy	1%⊕1%/ sqrt(E)	1%⊕1%/ sqrt(E)	.5%⊕.5%/ sqrt(E)	.5%⊕/.5%/ sqrt(E)	1%⊕1%/ sqrt(E)	1%⊕1%/ sqrt(E)	1%⊕1%/ sqrt(E)
Hadronic resolution	30%/sqrt(E)	30%/sqrt(E)	15%/sqrt(E)	30%/sqrt(E)	30%/sqrt(E)	30%/sqrt(E)	15%/sqrt(E)
Lep angular resolution	2°	1°	2°	2°	1°	1°	2°
Had angular resolution	10°	5°	10°	10°	10°	10°	5°
MH Sensitivity (σ) δ _{CP} =0	1.983 (beam ~4.2)	1.987	2.314	2	1.981	2.107	2.382

Impact of hadrons on atmospheric neutrino physics

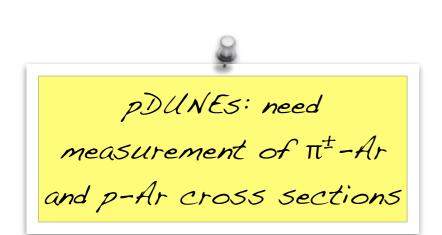
- Since hadrons are the most difficult part of the event to measure, they dominate our resolution in neutrino energy and angle
- For the MH measurement, we are talking about hadronic systems with few 100 MeV few GeV
- **Caveat**: neutrino-induced hadronic showers will be different from those produced by single particle test beams
 - However, the same nuclear models to simulate the former can be applied to the latter (ie, run GENIE in hadron-scattering mode)
 - Understanding the level of agreement in test beam data will be crucial for validating at least part of the models

Bonus: neutrino/antineutrino separation in atmospherics

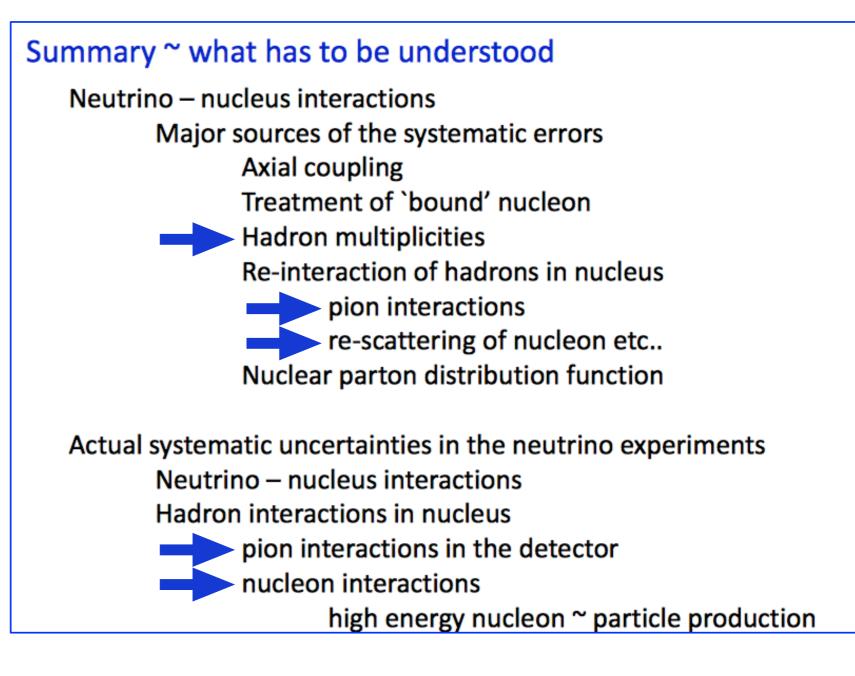

Separating neutrinos from antineutrinos would greatly enhance DUNE's sensitivity to MH


 Full separation could be achieved with B-field. In non-magnetised detector as DUNE, statistical discrimination still possible with proton tag or decay electron tag

[Fechner and Walter, JHEP 0911 (2009) 040]


neutrino:
$$v_{\mu} + n \rightarrow \mu^{-} + p$$

 $75\% \rightarrow capture$
 $25\% \rightarrow e^{-} + \overline{v}_{e} + v_{\mu}$


Tag	Efficiency			
Proton	100% if p KE > 50 MeV			
Decay electron	25% µ⁻, 100% µ⁺			

Atmospherics and interaction models From Y. Hayato's talk at ANW'16

http://indico.universe-cluster.de/indico/conferenceDisplay.py?ovw=True&confld=3533

Prioritized list of pDUNEs measurements for atmospherics physics *For discussion*

1.Track/shower reconstruction performance

- Energy and direction resolution for single hadrons
- Energy and direction resolution for multi-particle hadronic system
- Reconstruction efficiency
- Vertex resolution
- Lepton track sense (up/down)

2.Particle ID performance

- Efficiencies and contamination for e / $\mu,$ e / $\gamma,$ μ / π separation
- Particle / anti-particle ID via decay electron and proton tagging efficiencies

$3.\pi^{\pm}-Ar$ and $K^{\pm}-Ar$ cross section measurements

• Few 100 MeV - few GeV kinetic energies

pDUNEs measurements for NDK/Atmospherics Summary of priorities (tentative)

Physics topic	h-Ar xsecs	Track/shower reco	Particle ID
NDK	√	√ √	$\checkmark \checkmark \checkmark$
Atmospherics	√	$\checkmark \checkmark \checkmark$	√ √

ProtoDUNEs datasets and non-TPC instrumentation

ProtoDUNEs test beam requests

From SP proposal, DP TDR

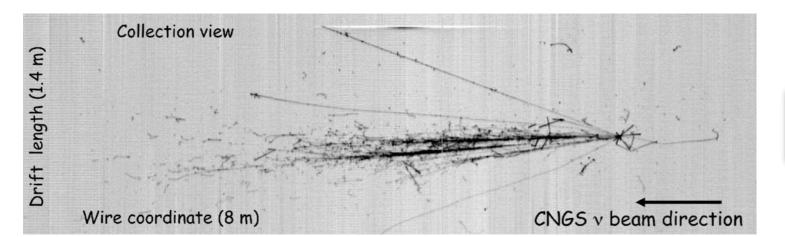
(arXiv:1409.

	Н2 Н4	LAGUNA-Proto (12.97m × 12.97m)			
	Particle	Momenta (GeV/c)	Sāmīple Size	Purpose ICARUS150t NESSIE (14.1m × 6.2m) (10.1m×9.75m)	
	π¥	0.2, 0.3, 0., 0.5, 0.7, 1, 2, 3, 5, 7	10k	$\underline{\text{adronic cal}}, \pi^0 \text{ content}$	
	π^+	9.2, 9.3, 9.4, D.5, 0,7, 1	1 0k	hac $\pi^0 \operatorname{conten}$	
	π^*		600k	$\pi^{\circ} \gamma$ sample ∞	
	proton	0.7, 1, 2, 3	10k	response, PID	
	proton	1	1M	mis-ID, PD, recombination	
pDUNE-SP	e^+ or e^-	0.2, 0.3, 0.4, 0.5, 1, 2, 3, 5, 7	10k	e- γ separation/EM shower	
DUNE-doc-186)	μ^-	(0.2), 0.5, 1, 2	10k	E_{μ} , charge sign	
	μ^+	(0.2), 0.5, 1, 2	10k	E_{μ} , Michel el., charge sign	
	$\mu^- \text{ or } \mu^+$	3, 5, 7	5k	$E_{\mu} \text{ MCS}$	
	anti-proton	low-energy tune	(100)	anti-proton stars	
	K ⁺	1	(13k)	response, PID, PD	
	K ⁺	0.5, 0.7	(5k)	response, PID, PD	
	μ , e, proton	1 (vary angle $\times 5$)	10k	reconstruction	

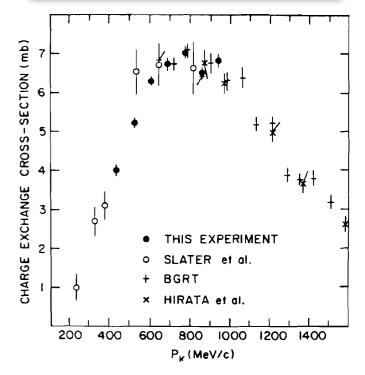
	Type	Momentum [GeV/c]	Rate [kHz]	Total	Time est. [hrs]
	Muon	tracks			
pDUNE-DP	$\mu^{+/-}$	0.8, 1.0, 1.5, 2.0, 5.0, 10.0, 20.0	0.1	$5 \times 10^6 \times 14$	200
rXiv:1409.4405)	Showe	r reconstruction			
· · · · · ·	$\pi^{+/-}$	0.5, 0.7, 1.0, 2.0, 5.0, 10.0, 20.0	0.1	$5 \times 10^6 \times 14$	200
	e	0.5, 0.7, 1.0, 2.0, 5.0, 10., 20.0	0.1	$5 \times 10^6 \times 7$	100

24

Beam datasets


Particle types and momenta

Overall, initial test beam request from pDUNEs is a good match to NDK/Atmospherics physics goals


- Specific comments:
 - K⁺ beams would be valuable. Not just K⁺ noninteracting events. Also K⁺ charge-exchange events to study K⁰s decay topologies

 π[±] beam data sets over extended momentum range valuable, covering from single track topologies to hadronic showers

 $\sim 10 \text{ GeV} v_{\mu} CC$

interaction in ICARUS

Beamline instrumentation

Momentum resolution

Ideally, beamline instrumentation should provide **better** momentum and PID selection/measurement compared to the ones we wish to perform in pDUNEs

 Current pDUNEs goal to measure momentum of incoming particles with 1-5% accuracy should be sufficient for NDK/Atmospherics purposes

Beamline instrumentation

Ideally, beamline instrumentation should provide **better** momentum and PID selection/measurement compared to the ones we wish to perform in pDUNEs

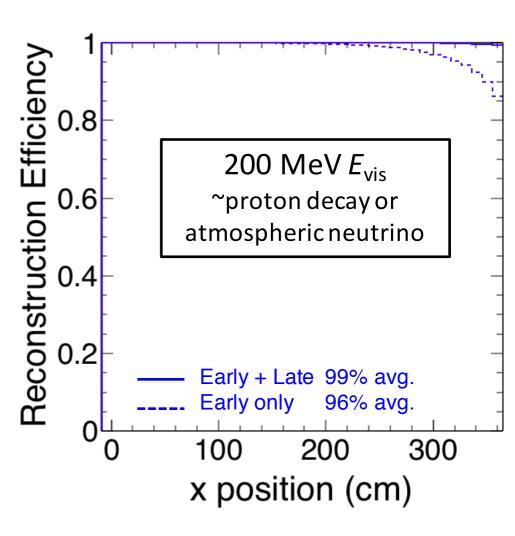
- **PID** requirements for NDK/Atmospherics still to be quantified. Preliminary numbers:
 - (e+µ+π) / K / p separation with >99% purity (and >99% efficiency) via dE/dx from Bueno et al. (arXiv:0701101) assumptions for NDK searches

Current pDUNES goal to provide >30 π/K separation over full momentum range should be maintained, even if for only a subset of events

• LBNE atmospherics studies assume **99%** π^{\pm} suppression in μ -like sample

Possible to limit muon contamination in π^{\pm} datasets to 1% at most?

• Also need "good" (tbd) e / μ / π separation


Photon detector system

• Slide from Alex Himmel for DUNE FD

pDUNES: validate MC expectations for PDS light yields

How much light do we need?

- Assume 0.32% detector efficiency, 5 PE threshold summed across all PDs.
- Look at proton decay or atm. neutrino-like energy depositions.
- Good efficiency (>99%) across the whole detector.
 - Seeing ~80 photons from the far side of the detector.
- Note: basically a calculation, not a full event simulation and reconstruction!

Cosmic-ray sample

And related instrumentation

- Instrumentation enabling cosmic ray muon sample very useful for pDUNEs calibration
- May also provide information for NDK/Atmospherics/Cosmogenic physics that is complementary to beam data samples
 - Photon detector system trigger efficiency vs deposited energy, position
 - Neutrons?

Summary

Summary

- Have tried to provide a prioritized list of pDUNEs measurements of
 particular relevance for Nucleon Decay / Atmospheric Neutrino Physics
- Started to think about pDUNEs beam requirements from NDK/ Atmospherics point of view. To be made more quantitative
- Natural for people involved in NDK/Atmospherics/Cosmogenic Physics
 WGs to <u>also</u> be involved in related pDUNEs analyses
 - TPC PID performance, hadron track/shower reco, charge sign discrimination, photon detector light yields, etc.