Projection Matching (PMA)

Dorota Stefan, Robert Sulej
ProtoDUNEs Science Workshop
June 29

Dun

Outline

- How Projection Matching Algorithm works?
- Possible reconstruction chains using PMA in LArSoft framework.

PMA reconstruction of:

- trajectory and $\mathrm{dE} / \mathrm{dx}$
- track-vertex structure
- shower direction

PMA 3D approach: what is different from other approaches

usual: n compatible 2D hits \rightarrow 3D space-point \rightarrow fit 3D trajectories to space-points

other way around: 3D object(s) \leftrightarrow hits or raw ADC in multiple 2D views

build 3D (single track or full track structures) to minimize distance the object's 2D projections to 2D hits

PMA place in the reconstruction chain

- input: pattern recognition at various stages, best if shower-like / track-like tagged
- output: 3D particle hierarchy (3D tracks + vertices, associations to 2D clusters and hits)
- hierarchy stored in PFParticle objects in LArSoft
- can fit single tracks, or cascade directions with or w/o fixed vertex position
- dQ/dx sequence for each view

PMA features

- hit - hit association is not needed, each 2D hit has its own 3D position on the trajectory, it is independent from hits in other projections
- reconstruction can use $\mathbf{2}$ or $\mathbf{3}$ views; even sections with only 1 view are still useful (in case of e.g. dificult track orientation, hit or cluster inefficiency, hardware problems, ...)
- hit charge is positioned along the trajectory without bias of association to a hit(s) in complementary view -> very good $\mathrm{dE} / \mathrm{dx}$
- full 3D objects are driven directly by 2D information; no intermediate step with 3D hits/points to be refitted again into tracks in 3D space
- the optimization can take into account also 3D points: vertices, feature points, ..., it is now used to support wire-plane-parallel orientation: clean endpoints (or entry/exit points) of tracks are detected
- basic idea can be widely extended to many aspects of reconstruction - next slides
- distortions (space charge, nonuniform E field) can be accomodated in the 3D $\rightarrow 2 \mathrm{D}$ projection function used during the optimzation if displacement mapping known

DinE

dE/dx output from Projection Matching

- Collection hit projected to 3D
- Induction hit projected to 3D
- reco track nodes
reco track
$d Q / d x$ vs range of reconstructed muons in protoDUNE

How vertices are reconstructed

Optimization can be applied to complex structures of tracks interconnected with vertices:

- Build, extend, stitch isolated track first
- Find candidates for track intersections and points where multiple tracks meet
- Join tracks in vertex candidates, reoptimize all tracks together
- local information from multiple tracks \rightarrow fit the best position of vertex and track directions
- Can further improve 2D pattern recognition output
- But needs implementation of complex manipulations on track merging / splitting / ...

Vertices + trajectories grammar

some basic examples of all possibilities

loops not allowed, only tree structures
not implemented now,
=> vertex missed

If reoptimization of new structure fails, then initial configuration is recovered.

Where is the primary vertex?

- may be trivial: most upstream vertex for v beam, but this fails often,
- test beam events: known beam entry position, direction \rightarrow select best matching particle,
- small events (proton decay, low energy neutrino): detect stoppers by $\mathrm{dE} / \mathrm{dx}$, adjust directions in the track system accordingly,
- large events: to be developped, primary vertex selection by track orientation and energy at reconstructed vertices.

DUNE

Vertex reconstruction resolution

Protons $2 \mathrm{GeV} / \mathrm{c}$; entry position of the primary beam particle

fDz

Protons $2 \mathrm{GeV} / \mathrm{c}$; first inelastic vertex position, if $>$ daughter with $\mathrm{E}_{\mathrm{k}}>50 \mathrm{MeV}$

Vertex reconstruction resolution

π^{0} in the hadronic system

$\mu \rightarrow$ e decay

Showers

Electrons, the same direction generated

300
$\stackrel{350}{1}$
3

- Various lenght of the clean track.
- Longer track has better precision in direction estimation.
- Showering distorts
 precision.

Shower direction reconstruction

1. Input: pattern recognition provides PFParticle tagged as EM shower, with associated clusters and vertex.
2. Compact group of hits is selected in each view, small \& isolated fragments are not used.
3. PMA segment is fitted to all hits from the shower; one endpoint is fixed at the vertex.
4. Hits with high range from vertex are removed, segment is reoptimized until MSE is low enough or min segment length is reached.
5. MSE allows to verify if direction is correctly reconstructed.

Note: Various shower orientation can prevent segment from correct reconstruction (parallel to the wire plane, initial part of the cascade in a shadow of developed cascade).

Shower direction reconstruction

Full reconstructed structure

Define a convention for data products made by PMA \rightarrow help navigation in analysis codes

- only one interaction vertex assigned to each PFParticle / Track: meaning: interaction point, where particle was created according to the reconstruction,
- kinks and any other features saved in accordingly named collections (art) and assinged to Tracks using the same instance name for associations,
- still there is no strict „LArSoft policy" for such topology descriptions.

Associations: singe trajectory

[^0]art::FindManyP< recob::Hit, recob::TrackHitMeta > hitFromTrk(trkListHandle, evt, trackingModuleLabel);

size_t view = vhit[h]->WireID().Plane;	// get 2D plane of hit
size_t idx = vmeta[h]->Index();	// get index of this hit along the trajectory
double $d x=$ vmeta[h]->Dx();	//dx seen by the hit in its 2D plane
double tdrift = vhit[h]->PeakTime();	// peak time of the hit
double dqadc = vhit[h]->Integral();	// dq of this hit

// get vector of hits for track with id
// get vector of metadata associated with hit-track assns
size_t view = vhit[h]->WireID().Plane; $/ /$ get 2D plane of hit
size_t idx = vmeta[h]->Index();
double $\mathrm{dx}=$ vmeta[h]->Dx();
double dqadc $=$ vhit[h]->Integral();
// get index of this hit along the trajectory
// dx seen by the hit in its 2D plane
// dq of this hit

DUNE

Associations: track-vertex structure

3D

PFParticles

- Particle hierarchy (mother \rightarrow daughters) described with PFParticles.
- Only one interaction vertex assigned to each PFParticle.
- Kinks, PMA nodes: saved as vertices / associated in named collections.

Topology description, example

2D reconstruction: cluster crawler
 geometry

DinE

Reconstruction in dual phase detector

reco: [rns, caldata, fasthit, gaushit, cchit, linecluster, pmtrack]

Event display for dual phase: evd_dunefddp.fcl

PMA is used in many physic analysis

Taken from Michelle Stancari presentation on Collaboration meeting (september 2015) FNAL Status of the 35t Prototype

DunE

Matt Robinson, Vitaly Kudryavtsev Karl Warburton, CM May 2016

Thank you!

[^0]: // howto get dQ/dx from the track:
 art::Handle< std::vectorrecob::Track> trkListHandle;
 bool hasTrk = evt.getByLabel(trackingModuleLabel, trkListHandle);
 // ...loop over tracks
 auto vhit = hitFromTrk.at(id);
 auto vmeta $=$ hitFromTrk.data(id);
 // ...loop over hits

