
1

Pandora Talk 7:
Shower and Event
Reconstruction

γp

µ

γ

J. S. Marshall for the Pandora Team

MicroBooNE Pandora Workshop
July 11-14th 2016, Cambridge

MicroBooNE Pandora Workshop

PandoraCosmic vs. PandoraNeutrino

2

• Two reconstruction paths, as specified by relevant PandoraSetting XML files:

• PandoraSettings_MicroBooNE_Cosmic.xml 
PandoraSettings_MicroBooNE_Neutrino.xml

• Cosmic pass: more strongly track-oriented; showers assumed to be delta rays, added as
daughters of the muons; muon vertices at track high-y coordinate.

• Neutrino pass: more careful to find interaction vertex and to protect particles emerging
from vertex. Careful treatment to address track/shower tension.

• Neutrino pass begins by running fast/minimal version of the 2D reco, 3D track reco and 3D Hit
creation. 3D Hits are then divided into slices, using proximity and direction-based metrics.

• Isolate neutrino interactions and/or cosmic-ray remnants in individual slices: original 2D Hits
associated with a slice used as input to neutrino pass, each slice produces one neutrino Particle.

https://github.com/PandoraPFA/LArReco/blob/master/scripts/uboone/PandoraSettings_MicroBooNE_Cosmic.xml
https://github.com/PandoraPFA/LArReco/blob/master/scripts/uboone/PandoraSettings_MicroBooNE_Neutrino.xml

MicroBooNE Pandora Workshop

Event Slicing

3

/**
 * @brief SlicingTool class
 */
class SlicingTool : public pandora::AlgorithmTool
{
public:
 /**
 * @brief Run the algorithm tool
 *
 * @param pAlgorithm address of the calling algorithm
 * @param caloHitListNames the hit type to calo hit list name map
 * @param clusterListNames the hit type to cluster list name map
 * @param sliceList to receive the populated slice list
 */
 virtual void Slice(const NeutrinoParentAlgorithm *const pAlgorithm, const NeutrinoParentAlgorithm::HitTypeToNameMap &caloHitListNames,
 const NeutrinoParentAlgorithm::HitTypeToNameMap &clusterListNames, NeutrinoParentAlgorithm::SliceList &sliceList) = 0;
};

 // ATTN Skipping-over some steps for brevity - view as pseudocode
 SliceList sliceList;
 m_pSlicingTool->Slice(this, m_caloHitListNames, m_clusterListNames, sliceList);

 for (const Slice &slice : sliceList)
 {
 for (const HitType hitType : m_hitTypeList)
 {
 // ATTN Also call 2D clustering alg here (removed for brevity)
 for (const std::string &algName : m_twoDAlgorithms)
 PANDORA_RETURN_RESULT_IF(STATUS_CODE_SUCCESS, !=, PandoraContentApi::RunDaughterAlgorithm(*this, algName));
 }

 // Subsequent reconstruction
 StringVector algorithms;
 algorithms.insert(algorithms.end(), m_vertexAlgorithms.begin(), m_vertexAlgorithms.end());
 algorithms.insert(algorithms.end(), m_threeDAlgorithms.begin(), m_threeDAlgorithms.end());
 algorithms.insert(algorithms.end(), m_mopUpAlgorithms.begin(), m_mopUpAlgorithms.end());
 algorithms.insert(algorithms.end(), m_threeDHitAlgorithms.begin(), m_threeDHitAlgorithms.end());
 algorithms.insert(algorithms.end(), m_neutrinoAlgorithms.begin(), m_neutrinoAlgorithms.end());

 for (const std::string &algName : algorithms)
 PANDORA_RETURN_RESULT_IF(STATUS_CODE_SUCCESS, !=, PandoraContentApi::RunDaughterAlgorithm(*this, algName));
 }

NeutrinoParentAlgorithm

NeutrinoParentAlgorithmParent alg
controls all
operations:

Runs fast 3D
reco algs

Calls slicing
tool

Neutrino
reco pass for

each slice

MicroBooNE Pandora Workshop

Shower Reconstruction

4

 <!-- Shower reconstruction -->
 <algorithm type = "LArClusterCharacterisation">
 <InputClusterListNames>ClustersU ClustersV ClustersW</InputClusterListNames>
 </algorithm>
 <algorithm type = "LArShowerGrowing">
 <InputClusterListNames>ClustersU ClustersV ClustersW</InputClusterListNames>
 <ShouldRemoveShowerPfos>true</ShouldRemoveShowerPfos>
 <InputPfoListNames>TrackParticles3D</InputPfoListNames>
 </algorithm>
 <algorithm type = "LArThreeDShowers">
 <InputClusterListNameU>ClustersU</InputClusterListNameU>
 <InputClusterListNameV>ClustersV</InputClusterListNameV>
 <InputClusterListNameW>ClustersW</InputClusterListNameW>
 <OutputPfoListName>ShowerParticles3D</OutputPfoListName>
 <ShowerTools>
 <tool type = "LArClearShowers"/>
 <tool type = "LArSplitShowers"><NCommonClusters>2</NCommonClusters></tool>
 <tool type = "LArSplitShowers"><NCommonClusters>1</NCommonClusters></tool>
 <tool type = "LArSimpleShowers"/>
 </ShowerTools>
 </algorithm>

• Neutrino pass differs from cosmic pass by using 2D Clusters to identify interaction
vertex, then, after 3D track algs, by providing more sophisticated shower reconstruction.

• Try to add branches to any long Clusters that represent “shower spines”. The spines may already
exist in track Particles and any tracks that start to acquire multiple branches are deleted.

• The Particle is deleted and its 2D Clusters “released”; they will instead acquire the identified
branches and will provide input to later 3D shower reconstruction algorithms.

Ultimately intend to perform
shower growing in 3D (or

3x2D, simultaneously).

Current procedure rather
clumsy: delete, grow then
reform shower Particles.

XML

MicroBooNE Pandora Workshop

2D Cluster Characterisation

5

Many small
shower-like

clustersw

x

Track-like

• Characterise 2D Clusters as track-like or shower-like using topological measures (some
use of calorimetric information would also be desirable in the future).

• Track selection cuts placed on length of the Clusters, measurement of their transverse width
and how sparse the Hit distribution is along the Clusters.

• Provide indication of likely Cluster particle id for use in downstream shower reco algorithms.

 if (this->IsClearTrack(pCluster))
 {
 PandoraContentApi::Cluster::Metadata metadata;
 metadata.m_particleId = MU_MINUS;
 PandoraContentApi::AlterMetadata(*this, pCluster, metadata);
 }

MicroBooNE Pandora Workshop

2D Shower Spine Selection

6

Vertex

Protected
track cluster

Candidate
branches

Shower
spinew

x

• Identify 2D Clusters that could represent shower spines. These are typically long, flagged
as shower-like and vertex-associated (either near vertex position or point to it).

• Shower spines could already be part of existing track Particles (which may even group spines
for same shower in all views). New alg needed to add branches to existing shower Particles.

• Existence in Particle not guaranteed: ability of 2D reco to track along shower length not well-
defined. Likely poor common x-overlap; maybe miss in one view; problems with sparse showers.

 /**
 * @brief Whether pointing vertex is emitted from a given position
 *
 * @param parentVertex the parent vertex position
 * @param daughterVertex the daughter pointing vertex
 * @param minLongitudinalDistance the min longitudinal distance cut
 * @param maxLongitudinalDistance the max longitudinal distance cut
 * @param maxTransverseDistance the max transverse distance cut
 * @param angularAllowance the pointing angular allowance in degrees
 *
 * @return boolean
 */
 static bool IsEmission(const pandora::CartesianVector &parentVertex, 
 const LArPointingCluster::Vertex &daughterVertex,
 const float minLongitudinalDistance, 
 const float maxLongitudinalDistance, 
 const float maxTransverseDistance, 
 const float angularAllowance);

LArPointingClusterHelper

MicroBooNE Pandora Workshop

2D Shower Branch Growing

7

Branches merged
with spine, forming
2D shower Cluster

Any track Particle acquiring
branches is deleted/released

w

x

• Add 2D branch Clusters to most appropriate 2D shower spine. Recursive approach,
finding branches on spine candidate, then branches on branches, etc.

• For every branch, record strength of association to each shower spine candidate. Keep track
of strengths of “paths of association” between branches and spines.

• Approach allows informed decisions about which branches to add to which shower spines,
providing information about the context of the overall event topology.

• Design pattern: a derived algorithm just
needs to provide following implementation:

1. Selection of interesting shower spine
and shower branch candidates.

2. Logic dictating “strength” of association
between any provided pair of Clusters.

MicroBooNE Pandora Workshop

3D Shower Matching

8

 /**
 * @brief Constructor
 *
 * @param nMatchedSamplingPoints the number of matched sampling points
 * @param nSamplingPoints the number of sampling points
 * @param xOverlap the x overlap details
 */
 ShowerOverlapResult(const unsigned int nMatchedSamplingPoints, const unsigned int nSamplingPoints, const XOverlap &xOverlap);

 ShowerPositionMapPair positionMapsU, positionMapsV, positionMapsW;
 this->GetShowerPositionMaps(fitResultU, fitResultV, fitResultW, xSampling, positionMapsU, positionMapsV, positionMapsW);

 unsigned int nSampledHitsU(0), nMatchedHitsU(0);
 this->GetBestHitOverlapFraction(pClusterU, xSampling, positionMapsU, nSampledHitsU, nMatchedHitsU);

 unsigned int nSampledHitsV(0), nMatchedHitsV(0);
 this->GetBestHitOverlapFraction(pClusterV, xSampling, positionMapsV, nSampledHitsV, nMatchedHitsV);

 unsigned int nSampledHitsW(0), nMatchedHitsW(0);
 this->GetBestHitOverlapFraction(pClusterW, xSampling, positionMapsW, nSampledHitsW, nMatchedHitsW);

 const unsigned int nMatchedHits(nMatchedHitsU + nMatchedHitsV + nMatchedHitsW);
 const unsigned int nSampledHits(nSampledHitsU + nSampledHitsV + nSampledHitsW);

• Following 2D shower reconstruction, 2D shower Clusters are hopefully rather
complete and are matched between readout planes to form 3D shower Particles.

• Ideas and base classes developed for 3D track reconstruction are re-used. A ThreeDShowers
algorithm builds a tensor to store ShowerOverlapResult objects for Cluster combinations.

• A series of algorithm tools query the tensor, making changes to the 2D Clusters in order to
ensure that unambiguous shower Particles can be created.

LArShowerOverlapResult

ThreeDShowersAlgorithm
Collect

details of
2D shower
envelopes

MicroBooNE Pandora Workshop

ShowerOverlapResult

9

ClusterV
fitted shower

envelope

ClusterU  
predicted shower

envelope

ClusterW
fitted shower

envelope

+ =
Store enclosed hit fraction, and

x-overlap details, in tensor

x

• 2D sliding shower fit performed to 2D shower Clusters. Consists of three sliding linear
fit results: one to all Hits in 2D Cluster and one for fits to each of two “shower edges”.

• Shower edge fits consider only Hits with extremal transverse coordinates, wrt the shower
axis. Provides mechanism for parameterising envelope of the 2D shower Cluster.

• To calculate ShowerOverlapResult for combination of three Clusters, shower edges from
two views (e.g. V, W) are combined to produce shower envelope for third Cluster (e.g. U).

• Fraction of Hits in the third Cluster contained within the envelope is recorded. All three
combinations of Clusters used to evaluate ShowerOverlapResult (also records x-overlap).

MicroBooNE Pandora Workshop

ClearShowers Tool

10

e.g. 3:3:1

Small problems cause ambiguities, but the best
shower Cluster combination is obvious.

U: 3 V: 3 W: 1
v

x

w

x

u

x

• First is the ClearShowersTool, which
looks to form shower Particles from
any unambiguous associations.

• Rather like the LongTracksTool, it also
looks to resolve “obvious” ambiguities,
where the best combination is clear.

• Association between Clusters must satisfy
quality cuts on common x-overlap and
fraction of Hits enclosed in envelopes.

• As with track reco, full list of tools runs
again if any tool makes a change to the 2D
Clusters or forms a Particle.

MicroBooNE Pandora Workshop

SplitShowers Tool

11

e.g. 3:1:1

Three tensor elements
with two Clusters in
common (V and W)

U: 3

W: 1

V: 1

x

• SplitShowerTool looks to address kind
of topology shown in example.

• Three tensor elements share common
Clusters in V and W views.

• Flags the three U Clusters as worthy of
further investigation.

• In two passes of tool (each merging one
pair of Clusters), association between U
Clusters examined and Clusters merged.

• Tool can operate in modes where it
examines ShowerOverlapResults with
either one or two Clusters in common.

• Looks to see if plausible Cluster merges
can remove Particle creation ambiguities.

• Further tensor tools foreseen to improve
this area, e.g. introducing shower splitting.

MicroBooNE Pandora Workshop

Particle Id

12

• Particle identification labels (PDG codes) attached to the final Particles identify:

• Particles created by 3D track reconstruction: 𝜇, PDG 13.

• Particles created by 3D shower reconstruction: e, PDG 11.

• Reassessing particle identification for the final Particles is on the TODO list. One simple
approach would be to re-use 2D ClusterCharacterisation-type of approach: 3x2D.

• Current approach relies, in part, on information calculated before any branches were
added to shower spines! Number of branches added: important piece of information!

MicroBooNE Pandora Workshop

Particle Refinement - 2D

13

BoundedCluster
mop-up, picks-up lone
clusters enclosed in
shower envelopes.

ConeBased mop-up,
picks-up clusters
enclosed in a cone
about shower.

Compare

w

x

• Began by forming 2D Clusters, then
using topological association algs to
improve purity and completeness.

• Now perform similar operations, to
refine initial track and shower Particles.

• For shower Particles, use simple 2D
algorithms to pick-up missing objects:
small, unassociated 2D Clusters or Hits.

• Use shower envelopes and cone fits to
2D shower Clusters to control merging
of lone Clusters with Clusters in Particles.

MicroBooNE Pandora Workshop

Particle Refinement - 3D

14

U

V

Vertex
Particle

(shower)

Daughter
Particle 1  
(shower)

Daughter
Particle 2  

(track)

VertexBasedPFO mop-up,
important for sparse showers.

W

x

• Now merge reconstructed Particles
that look like they represent elements
of the same true particle.

• Important for very sparse showers,
where there can be sizeable distances
between groupings of Hits.

• Example shows single true shower, split
into multiple reconstructed Particles:  
one track and two showers.

• VertexBasedMerging alg works
outwards from interaction vertex and
iteratively picks-up downstream Particles.

• Uses cone fits to 2D Clusters, but looks
for evidence of association in all views.
Continues until all possible merges made.

MicroBooNE Pandora Workshop

Particle Hierarchy

15

1. Create a neutrino Particle and attach the interaction vertex.

2. Add primary daughters: look for evidence of association between 3D Clusters
in track and shower Particles and the interaction vertex (nearby, pointing?).

3. Add subsequent daughter Particles to existing primary daughters of neutrino  
e.g. add decay electron to parent primary muon.

4. Set particle id for neutrino, based on whether daughter Particle with most 2D
Hits is a track or a shower: label as νμ or νe respectively.

5. Provide 3D vertex positions for each Particle in hierarchy: points of closest
approach to parent Particles, or to interaction vertex (if primary).

Final Particles are organised into a hierarchy, which assumes the input 2D Hits in
slice represent a neutrino interaction. Use the newly-created 3D Hits/Clusters:

MicroBooNE Pandora Workshop 16

Particle Hierarchy

3D neutrino
interaction vertex

An example event output (arbitrarily, a rather high-energy νe) is as shown below:

5 GeV νe CC: Display 1/4

The reconstructed neutrino particle contains:

- Metadata: PDG code, 4-momentum, etc

- A 3D interaction vertex

- A list of daughter particles

MicroBooNE Pandora Workshop 17

Particle Hierarchy

5 GeV νe CC: Display 2/4

+ Primary daughter particles of the
neutrino, each of which has:

- Particle metadata

- A list of 2D clusters and a 3D cluster

- A 3D interaction vertex

- A list of any further daughter particles

An example event output (arbitrarily, a rather high-energy νe) is as shown below:

MicroBooNE Pandora Workshop 18

Particle Hierarchy

5 GeV νe CC: Display 3/4

+ Complete list of daughter particles in
the reconstructed particle hierarchy

An example event output (arbitrarily, a rather high-energy νe) is as shown below:

MicroBooNE Pandora Workshop 19

Particle Hierarchy

5 GeV νe CC: Display 4/4

+ Overlay details of generated
particles, for reference/validation

Each input slice results in one neutrino Particle, which is extracted by the client app and
translated to the LArSoft EDM for downstream processing - Talk 8, Handling Outputs.

MicroBooNE Pandora Workshop 20

Questions?

