
1

Pandora Talk 3:
SDK Detailsγp

µ

γ

J. S. Marshall for the Pandora Team

MicroBooNE Pandora Workshop
July 11-14th 2016, Cambridge

MicroBooNE Pandora Workshop 2

• The idea behind the Pandora Software Development Kit (SDK) is that the operations
required to solve almost all pattern-recognition problems are well-defined:

• Sort input points in time or space into higher-level structures e.g. Clusters,

• Refine Clusters by merging and/or splitting operations,

• Sort Clusters into groups and/or hierarchies, e.g. representing Particles.

• What differs between problems is the precise logic used to govern these operations.

Introduction

HCAL

TPCECAL

NIMA.2009.09.009, NIMA.2012.10.038 arXiv:1307.7335, 1506.05348 LHCC-P-008

MicroBooNE Pandora Workshop 3

• Created the Pandora SDK for developing and running pattern-recognition algorithms,
with Application Programming Interfaces (APIs) designed to ensure that:

1. It is easy for users to provide the building-blocks defining a pattern-recognition problem.

2. Logic required to solve pattern-recognition problems is cleanly implemented in algorithms.

3. Operations to access or modify building-blocks requested by algs, performed by Pandora.

• This design is well-suited to the multi-algorithm approach: use a large number of decoupled
algorithms, each targeting specific event topologies, typically merging or splitting Clusters.

Design Principles

Input/Output Logic

Operations

MicroBooNE Pandora Workshop 4

Implementation

• The SDK consists of a dependency-free C++ library and its associated APIs. It provides
an Event Data Model (EDM) for managing pattern-recognition problems.

• Instances of objects in the EDM are owned by Pandora Managers and are stored in named lists.
The Managers are able to create new objects, delete objects, create and save new lists, etc.

• The Managers provide a complete set of low-level operations that allow all the high-level
operations likely to be needed by pattern-recognition algorithms to be satisfied.

Pandora ManagerAlgorithm

Discussed in
this talk:

MicroBooNE Pandora Workshop 5

Traditional  
calorimetry

Particle flow  
approach

• SDK developed for reimplementation
of particle flow reconstruction at
future e+e- linear collider.

• Informed by lessons learned during
original PandoraPFA implementation:

• Support multi-algorithm approach

• Support reclustering and recursion

HCAL

TPC
EC

AL

n

𝛑+

γ

HCAL

EC
AL

TPC

Typical event topologies

Historical Context

MicroBooNE Pandora Workshop

Event Data Model

6

CaloHit Track  
(LC use only)

MC
Particle

Cluster Vertex

Particle
(PFO)

Algorithm Objects

Input Objects

Daughter object can
be added to parent

MC Particle Link

Created by Algs

Created by Client App

Pandora Managed Types

• EDM consists of classes to represent the input building-blocks for pattern-recognition
problems and the structures that can be created using these building-blocks.

• Provides well-defined development environment for managing pattern-recognition problems
and allows for independence of algorithms, which can only communicate via the EDM.

• EDM aims to be self-describing, with each object providing all the information required to
allow investigation and processing by the pattern-recognition algorithms.

MicroBooNE Pandora Workshop 7

Input Objects

• Input Objects are the building-blocks for pattern recognition, typically created by the
client app before algorithm operations begin.

• Their properties are defined at creation and cannot be changed. They are instead used to
build new constructs, termed “Algorithm Objects".

• The usage of all Input Objects is monitored to ensure that no double-counting/usage occurs.

CaloHit

Track  
(LC use only)

MC
Particle

Primary building-block, defining a position and extent in space (or time), with
an associated intensity or energy measurement and detector location details.

Represents a continuous trajectory of well-defined space-points, with helix
parameterisation. Track parent-daughter and sibling relationships supported.

For development purposes, provide details of true pattern-recognition solution.
Support parent-daughter links and can be associated to CaloHits and Tracks.

MicroBooNE Pandora Workshop 8

Algorithm Objects

Cluster

Vertex

Particle

• Algorithm Objects represent the higher-level structures created in order to solve
pattern-recognition problems.

• Pandora carefully manages the allocation and manipulation of these objects and all non-const
operations can only be requested by algorithms via the Pandora Content APIs.

• Pandora is then able to perform the memory-management for these objects.

Collection of CaloHits and main working-horse for algorithms (which create,
merge, split Clusters). Provides some derived properties of CaloHit collection.

The identification and classification of a specific point in space, typically used
to flag positions of particle creation or decay.

Container of Clusters, Tracks and Vertices, together with metadata describing
e.g. particle type. Ultimate Pandora output and can represent a hierarchy.

MicroBooNE Pandora Workshop 9

Object Creation

PandoraApi::CaloHit::Parameters caloHitParameters;
caloHitParameters.m_positionVector = ...
caloHitParameters.m_expectedDirection = ...
...

PANDORA_THROW_RESULT_IF(pandora::STATUS_CODE_SUCCESS, !=, PandoraApi::CaloHit::Create(*pPandora, caloHitParameters));

In client app:

Provides clean, simple interface to create any/all Pandora objects:

i. Construct parameters, e.g. PandoraApi::CaloHit::Parameters
ii. Assign properties to parameters public member variables
iii. Request object creation, e.g. PandoraApi::CaloHit::Create(…)
iv. Failure to assign to all properties will raise an exception

• As seen during discussion of client application, instantiation of objects in Pandora
EDM follows a template design pattern with a clean and simple interface.

• Object creation is typically requested by the client app (Input Objects) or by an algorithm
(Algorithm Objects). Must create a parameters instance and provide all information up-front.

• Request to create object then made to Pandora, which will check that all required
information has been provided and, if so, perform the allocation.

• The new object instance is owned and managed by Pandora (see upcoming discussion of
object Managers), but can be accessed and manipulated by algorithms, via the APIs.

MicroBooNE Pandora Workshop 10

Client Application

• As previously discussed, client app is responsible for providing Input Objects that
define the pattern-recognition problem and for persisting the output Particles.

• Also responsible for creating Pandora instances, bringing-together (collections of) algorithm
implementations and for configuring the reconstruction via the Pandora Settings XML file.

• Algorithms depend on Pandora SDK, but can also have as many external dependencies as
required. The client app depends on Pandora and on all libraries providing algorithms.

• The actual algorithm instances used in the reconstruction are not created unless specified in
the Pandora Settings; created when the XML file is parsed by Pandora.

Built with client
app, or in libraries
of Pandora content

MicroBooNE Pandora Workshop 11

Managers

• At very heart of Pandora design are the Managers,
which own all instances of objects in Pandora EDM.

• The Managers are designed to provide a complete set of
low-level object manipulation functions.

• Algs request high-level services (e.g. merge two Clusters),
which are then satisfied when the hidden implementation
calls the low-level Manager functions in the correct order.

• Approach helps ensure that implementation is extensible,
easy to maintain and rather human-readable.

• Key part of design is that algorithms can only access or
modify managed objects via the APIs, so Managers are able
to perform memory-management.

A Pandora instance is simply a container of Manager
instances and API implementation instances

MicroBooNE Pandora Workshop 12

Managers

 /**
 * @brief Get the current list
 *
 * @param algorithm the algorithm calling this function
 * @param pT to receive the address of the current list
 * @param listName to receive the current list name
 */
 template <typename T>
 static pandora::StatusCode GetCurrentList(const pandora::Algorithm &algorithm, const T *&pT, std::string &listName);

• Pandora objects are heap-allocated and their addresses are stored in named object
lists, owned by the relevant object Manager instance.

• Object lists are unordered_sets, a storage strategy that ensures efficient retrieval of specific
object instances, although unordered nature means care is often required in algorithms.

• Each Manager holds a mapping from the list name (string) to address of the object list. It also
stores the set of saved list names, plus the name of the algorithm-designated “current” list.

• Algorithms can use the Pandora APIs to receive const references to the object lists
from the Managers. Algorithms can access lists by name or ask for the current list.

• Managers hold address of associated Pandora instance and record details of all algs running:
e.g. current list name when alg began, names of any temporary lists created.

PandoraContentApi.h

MicroBooNE Pandora Workshop 13

Managers

Manager template base class
provides functionality for
supervising and accessing

named lists of objects.

Derived classes provide
functionality reflecting different

rules governing creation and usage
of Algorithm and Input Objects.

pandora::Manager< T >

m_nameToListMap

m_algorithmInfoMap

m_currentListName

m_savedLists

m_pPandora

NULL_LIST_NAME

+ Manager()

+ ~Manager()

GetList()

GetCurrentList()

GetCurrentListName()

GetAlgorithmInputList()

GetAlgorithmInputListName()

ResetCurrentListToAlgorithmInputList()

ReplaceCurrentAndAlgorithmInputLists()

DropCurrentList()

CreateTemporaryListAndSetCurrent()

RegisterAlgorithm()

ResetAlgorithmInfo()

ResetForNextEvent()

EraseAllContent()

CreateInitialLists()

Modifiable()

pandora::AlgorithmObjectManager< T >

m_canMakeNewObjects

+ AlgorithmObjectManager()

+ ~AlgorithmObjectManager()

CreateTemporaryListAndSetCurrent()

MoveObjectsToTemporaryListAndSetCurrent()

SaveObjects()

MoveObjectsBetweenLists()

TemporarilyReplaceCurrentList()

DeleteObjects()

DeleteTemporaryObjects()

GetResetDeletionObjects()

ResetCurrentListToAlgorithmInputList()

ReplaceCurrentAndAlgorithmInputLists()

DropCurrentList()

ResetAlgorithmInfo()

EraseAllContent()

pandora::InputObjectManager< T >

INPUT_LIST_NAME

+ InputObjectManager()

+ ~InputObjectManager()

CreateInputList()

CreateTemporaryListAndSetCurrent()

SaveList()

AddObjectsToList()

RemoveObjectsFromList()

EraseAllContent()

CreateInitialLists()

MicroBooNE Pandora Workshop 14

Input Object Managers

CaloHit Track  
(LC use only)

MC
Particle

• Input Objects can be created, via APIs, by any function with access to the Pandora
instance. Most common point of creation is the client application.

• Newly-requested objects are created on heap by relevant Manager, and address is stored in a
specific named list: the “Input” list.

• Idea is that Input Objects cannot be modified or deleted by algorithms, although new, refined
objects could be created. Input list keeps full record of all instances created.

• Algorithms can choose to work with Input list or, more typically, save new lists (under new
names) containing only a subset of the Input list (Input Objects can appear in multiple lists).

• Memory-management is simple, as all Input Objects are deleted, and all lists erased/reset, only
when the client application asks to reset Pandora between events.

MicroBooNE Pandora Workshop 15

Algorithm Object Managers

Cluster Vertex Particle

• Memory-management is considerably more complex for Algorithm Objects, which will
be created, modified and deleted as the pattern recognition progresses.

• Pandora enforces a specific approach which maintains flexibility, but is ultimately built around
its flagship reclustering functionality.

• To create a new Algorithm Object, must first instruct relevant Manager to have a new,
temporary object list as the current list, waiting to receive newly-created instances.

• The temporary list is associated with the alg that requested it. When this alg finishes
processing the event, all its temporary lists are erased and the list contents deleted.

• In order to persist the Algorithm Objects, the algorithm must first ask to save some/all the
objects in a new or existing named list.

• Unlike Input Objects, it is enforced that Algorithm Objects can exist in only one list.

MicroBooNE Pandora Workshop 16

Monitoring Object Usage

 /**
 * @brief Is object, or a list of objects, available as a building block
 *
 * @param algorithm the algorithm calling this function
 * @param pT address of the object
 *
 * @return boolean
 */
 template <typename T>
 static bool IsAvailable(const pandora::Algorithm &algorithm, const T *const pT);

• Algorithm Objects are typically containers of other objects. Clusters, are containers of
CaloHits, whilst Particle are containers of Clusters, Tracks and Vertices.

• Important role played by the Managers is to monitor object usage and ensure that no double-
counting can occur.

• Monitoring generally simple, but significantly more complex when reclustering allows
algorithms to simultaneously explore multiple alternative Cluster configurations!

• Enforce that objects cannot appear in multiple objects (e.g. must remove from first before
allowed to add to second). In reclustering, rules applied for each set of Cluster candidates.

Algs can use APIs to ask
whether objects are

available or have already
been used

PandoraContentApi.h

MicroBooNE Pandora Workshop 17

Algorithms

• Algs contain step-by-step instructions, using Pandora
APIs to request object creation/modification services.

• Algs inherit from the Pandora Process abstract base class.
Inherited functionality controls handshaking between
Pandora instance and algorithm instance.

• Process provides ability to receive a ReadSettings callback
with an XML handle (tinyxml) from which configurable
parameters can be extracted. Also an Initialize callback.

• The Algorithm purely abstract base class provides the
interface for the Run callback, which is called each event
and is the entry point for all event processing.

• Algorithm Factories registered (under a specific name),
by the client app are extremely simple:

• Must allocate instance of derived algorithm type and return
pointer to Algorithm base class.

MicroBooNE Pandora Workshop 18

Algorithm Configuration

 <algorithm type = "LArCandidateVertexCreation">
 <InputClusterListNameU>ClustersU</InputClusterListNameU>
 <InputClusterListNameV>ClustersV</InputClusterListNameV>
 <InputClusterListNameW>ClustersW</InputClusterListNameW>
 <OutputVertexListName>CandidateVertices</OutputVertexListName>
 <ReplaceCurrentVertexList>true</ReplaceCurrentVertexList>
 </algorithm>
 <algorithm type = "LArVertexSelection">
 <InputCaloHitListNameU>CaloHitListU</InputCaloHitListNameU>
 <InputCaloHitListNameV>CaloHitListV</InputCaloHitListNameV>
 <InputCaloHitListNameW>CaloHitListW</InputCaloHitListNameW>
 <OutputVertexListName>SelectedVertices</OutputVertexListName>
 <ReplaceCurrentVertexList>true</ReplaceCurrentVertexList>
 <BeamMode>true</BeamMode>
 </algorithm>

• Algs configured by XML file provided by client application. Algorithm Manager parses
file and looks for algorithm tags within the top-level <Pandora></Pandora> tags.

• Extracts algorithm type, which must match name of a registered Alg Factory. If match found,
Factory creates new instance of desired type and Manager stores pointer to base class.

• After creation, Manager will call ReadSettings member function of new algorithm, providing a
handle to the XML element describing the algorithm.

• ReadSettings can demand presence of specific daughter XML tags, or can search for optional
tags to override default parameter values, if present. Examples in exercises.

When client app calls
ProcessEvents, Pandora calls
Run for each top-level algorithm,

in order, then returns thread

MicroBooNE Pandora Workshop 19

Nested Algorithms

 <algorithm type = "LArClusteringParent">
 <algorithm type = "LArTrackClusterCreation" description = "ClusterFormation"/>
 <InputCaloHitListName>CaloHitListU</InputCaloHitListName>
 <ClusterListName>ClustersU</ClusterListName>
 <ReplaceCurrentCaloHitList>false</ReplaceCurrentCaloHitList>
 <ReplaceCurrentClusterList>true</ReplaceCurrentClusterList>
 </algorithm>

• The Algorithm Manager only searches for algorithm XML tags within the top-level
Pandora tags. These are the algorithms to be called, in order, each event.

• In its ReadSettings callback, however, each algorithm is given full control of parsing details
contained within its XML tag.

• The algorithm can search for nested daughter algorithms, which could be specified in a
named list, or may be identified via an XML description attribute.

• The parent alg can use an API to instruct the Alg Manager to construct/configure a new
daughter algorithm instance and return the unique name of the daughter algorithm.

• During event processing the parent algorithm can use an API to ask to run the daughter
algorithm with the stored unique name.

Nesting allows parent alg
to e.g. manipulate current

object lists, then call
reusable daughter algs to

process list contents

daughter alg

MicroBooNE Pandora Workshop 20

Algorithm Tools

Algorithms must provide Run implementation;
AlgorithmTools have user-defined interface to

provide services to Algorithms

• Daughter alg functionality promotes
the development of small, reusable algs
to perform specific operations.

• Parent and daughter algs are decoupled
and can only communicate by manipulating
objects in EDM or the object lists.

• AlgorithmTools inherit from the Process
class, so have all the handshaking and
configuration functionality of an algorithm.

• Don’t receive Run callback. Instead, parent
alg defines interface for its tools and is
given access to pointers to tool instances.

• Parent alg can create complex object, then
give it to its tools for processing. Tool
selection/configuration specified via XML.

MicroBooNE Pandora Workshop 21

APIs

• APIs are static functions, typically
templated to allow operations on each
of the different types in Pandora EDM.

• Content APIs only usable by algs and take
alg reference as argument, allowing static
functions to resolve to a Pandora instance.

• Careful friending of classes ensure the API
implementation instance can call Manager
functionality inaccessible to other classes.

• APIs used by client app take a reference to
a Pandora instance as an argument, but
otherwise work in identical manner.

• The final algorithms can be structured
around their key API calls and can be
written in simple pseudo-code form.

MicroBooNE Pandora Workshop 22

Reclustering

1. Ask for current Cluster list, spot issues and ask to recluster
Original Clusters moved to a new temporary list; current CaloHit list changed

2. Ask to run a clustering algorithm
New temporary list formed and filled by daughter clustering algorithm

3. Calculate figure of merit for new Cluster candidates

4. Repeat stages 2 and 3 as required
Can re-use original clustering alg, with different parameters, or try a new alg

5. Choose most appropriate Cluster candidates
Cluster lists will be tidied as required; original Clusters are seamlessly replaced

+ Local reclustering allows
direct comparison of two

Cluster configurations
within single alg

• Reclustering allows algorithms to simultaneously explore multiple different Cluster
configurations. Clustering results can be compared side-by-side and the best selected.

• Pandora will automatically tidy-up any discarded Cluster options and the selected Clusters
will seamlessly replace the originals, which entered the reclustering process.

• Instead of selecting the best algorithmic approach to solve a problem, the user is able to
control a process whereby the approach that best solved the problem is identified.

• Yet to exploit this for LAr TPC reco: just need a good figure of merit to assess Clusters.

MicroBooNE Pandora Workshop 23

• Client app can provide basic detector geometry,
which can then be accessed by algorithms.

• Can specify named sub detectors, with assumed
polygonal structure.

• Can also provide information about Line, Concentric
and Box Gaps in detector active volume.

• In general, existing Pandora algs try to avoid use of
geometry info and work with Hits/Clusters alone.

• Plugins inherit from the Process base class and
have interfaces tailored to their specific usage:

• Particle id,

• Cluster energy estimators,

• EM shower profile characterisation,

• Magnetic field maps access,

• Division of detector volume into layers.

Geometry and Plugins

TPC_VIEW_V

LineGaps

v [cm]

x [cm]

Blue: Low Weight
Green: High Weight

EM shower core
reduced in energy

(weight < 1)

Surrounding Hits have energy
increased (weight > 1)

E.g. Novel hadronic energy estimator at ILC

MicroBooNE Pandora Workshop 24

• PandoraMonitoring package depends on the Pandora SDK and ROOT. It understands
how to translate Pandora objects into ROOT TEVE for visualisation.

• PandoraMonitoring APIs allow algs to perform customised, visual debugging. Algs can
choose which objects to display, when and in which colours. Can add guiding markers, etc.

• Reusable visualisation algs can be added to PandoraSettings XML config files at different
points in multi-algorithm reconstruction without rebuilding.

• Also offers TTree-writing and histogram functionality, whilst keeping ROOT at arm’s length.

 . . .
 <algorithm type = "LArLayerSplitting"/>
 <algorithm type = “LArLongitudinalAssociation"/>
 <algorithm type = "LArVisualMonitoring">
 <ClusterListNames>ClustersU</ClusterListNames>
 </algorithm>
 <algorithm type = “LArTransverseAssociation"/>
 <algorithm type = "LArVisualMonitoring">
 <ClusterListNames>ClustersU</ClusterListNames>
 </algorithm>
 <algorithm type = "LArLongitudinalExtension"/>
 <algorithm type = "LArTransverseExtension"/>
 <algorithm type = "LArOvershootSplitting"/>
 <algorithm type = "LArBranchSplitting"/>
 <algorithm type = “LArKinkSplitting"/>
 . . .

e.g. Add markers
to check cone fit

to a cluster

e.g. Add two
event display

algs to
examine

changes as
reconstruction

progresses

Visualisation

MicroBooNE Pandora Workshop 25

// ATTN: Edited for slide display; inc. removal of API return value checks
int main(int argc, char *argv[])
{
 Parameters parameters;

 if (!parameters.ParseCommandLine(argc, argv))
 return 1;

 const pandora::Pandora *const pPandora(new pandora::Pandora());
 LArContent::RegisterAlgorithms(*pPandora);
 PandoraApi::ReadSettings(*pPandora, parameters.m_pandoraSettingsFile);

 unsigned int nEvents(0);
 while (nEvents++ < parameters.m_nEventsToProcess)
 {
 PandoraApi::ProcessEvent(*pPandora);
 PandoraApi::Reset(*pPandora);
 }

 delete pPandora;
 return 0;
}

• Pandora persistency allows Input Objects to be serialised in .pndr files (small,
portability not guaranteed) or .xml files (large, but compressible).

• No longer need full client/translation app to develop or test algs: can move to lightweight
environment where Entry Point constructs Pandora instance and runs reconstruction.

• Enables development without delays or complications introduced by parent software
framework and build system: rebuild and run in seconds, making for healthy development.

 <!-- ALGORITHM SETTINGS -->
 <algorithm type = "LArEventReading">
 <EventFileName>/PATH/TO/Events.pndr</EventFileName>
 <ShouldReadEvents>true</ShouldReadEvents>
 <SkipToEvent>0</SkipToEvent>
 </algorithm>

• Self-describing Input Objects: algs
don’t need to worry how/where
object properties were calculated.

• Objects serialised/deserialised by
Pandora, following requests from
EventReading, EventWriting algs.

Persistency

MicroBooNE Pandora Workshop 26

Building a LAr TPC Reconstruction

• Save input CaloHits in separate U, V and W lists

Talk 4: 2D Reconstruction

Talk 5: 3D Reconstruction

Talks 6 and 7: Vertex,
Shower and Event Reco.

Talk 8: Output and
Performance

• For each of U, V and W CaloHit lists:

• 2D Clustering alg

• 2D Cluster merging/splitting refinement algs

• Match Clusters between views and create Particles

• Particle merging/splitting refinement algs

• Vertex creation and Particle hierarchy construction

• Process output

MicroBooNE Pandora Workshop 27

Questions?

