
1

Pandora Talk 5:  
3D Track
Reconstruction

γp

µ

γ

J. S. Marshall for the Pandora Team

MicroBooNE Pandora Workshop
July 11-14th 2016, Cambridge

MicroBooNE Pandora Workshop

3D Track Reconstruction

2

• The main aim of the 3D track reconstruction is to identify three consistent, track-like
Clusters (one from each readout plane) and group them together in a Particle.

• If there are inconsistencies between the Clusters in the different views, algorithms can make
iterative corrections to the 2D Clustering in order to allow unambiguous Particles to emerge.

• For each input 2D Hit in a Particle, a new 3D Hit (or “SpacePoint”) can be created.

z

z

y

y

x x

u, v and w

x

Overlay U,V,W Clusters:
Look for common features,
exploiting common x
coordinate

Build Particles
and 3D Hits

MicroBooNE Pandora Workshop

Approach

3

Tensor 3D Base Alg Derived Algs Tensor Tools

• Approach is for an algorithm to compare all permutations of 2D Clusters from the
different readout planes and store the results in a rank-three tensor.

• The three tensor indices are the Clusters in the U, V and W views and, for each combination,
the value held in the tensor is a detailed record of the compatibility of the three Clusters.

• Tensor stores information for all the different Cluster combinations and provides a way for
algorithms to understand the ambiguities/connections between different Cluster combinations.

• A base class provides much of the functionality required to manage and query the tensor,
whilst derived algorithms can provide different types of OverlapResult to store in the tensor.

• The tensor is examined by AlgorithmTools which identify ambiguities and request changes to
the 2D Clusters until the tensor is diagonal and the correct combinations are unambiguous.

MicroBooNE Pandora Workshop

OverlapTensor

4

 /**
 * @brief Set overlap result
 *
 * @param pClusterU address of cluster u
 * @param pClusterV address of cluster v
 * @param pClusterW address of cluster w
 * @param overlapResult the overlap result
 */
 void SetOverlapResult(const pandora::Cluster *const pClusterU, const pandora::Cluster *const pClusterV, 
 const pandora::Cluster *const pClusterW, const OverlapResult &overlapResult);

 /**
 * @brief Replace an existing overlap result
 *
 * @param pClusterU address of cluster u
 * @param pClusterV address of cluster v
 * @param pClusterW address of cluster w
 * @param overlapResult the overlap result
 */
 void ReplaceOverlapResult(const pandora::Cluster *const pClusterU, const pandora::Cluster *const pClusterV, 
 const pandora::Cluster *const pClusterW, const OverlapResult &overlapResult);

 /**
 * @brief Remove entries from tensor corresponding to specified cluster
 *
 * @param pCluster address of the cluster
 */
 void RemoveCluster(const pandora::Cluster *const pCluster);

 typedef std::unordered_map<const pandora::Cluster*, pandora::ClusterList> ClusterNavigationMap;
 typedef std::unordered_map<const pandora::Cluster*, OverlapResult> OverlapList;
 typedef std::unordered_map<const pandora::Cluster*, OverlapList> OverlapMatrix;
 typedef std::unordered_map<const pandora::Cluster*, OverlapMatrix> TheTensor;

 TheTensor m_overlapTensor; ///< The overlap tensor
 ClusterNavigationMap m_clusterNavigationMapUV; ///< The cluster navigation map U->V
 ClusterNavigationMap m_clusterNavigationMapVW; ///< The cluster navigation map V->W
 ClusterNavigationMap m_clusterNavigationMapWU; ///< The cluster navigation map W->U

LArOverlapTensor

Interface for use by algs
filling the tensor

Tensor data-store and
navigation

MicroBooNE Pandora Workshop

OverlapTensor

5

 /**
 * @brief Get unambiguous elements
 *
 * @param ignoreUnavailable whether to ignore unavailable clusters
 * @param elementList to receive the unambiguous element list
 */
 void GetUnambiguousElements(const bool ignoreUnavailable, ElementList &elementList) const;

 /**
 * @brief Get the number of connections for a specified cluster
 *
 * @param pCluster address of a cluster
 * @param ignoreUnavailable whether to ignore unavailable clusters
 * @param nU to receive the number of u connections
 * @param nV to receive the number of v connections
 * @param nW to receive the number of w connections
 */
 void GetNConnections(const pandora::Cluster *const pCluster, const bool ignoreUnavailable, unsigned int &nU, unsigned int &nV, 
 unsigned int &nW) const;

 /**
 * @brief Get a list of elements connected to a specified cluster
 *
 * @param pCluster address of a cluster
 * @param ignoreUnavailable whether to ignore unavailable clusters
 * @param elementList to receive the connected element list
 */
 void GetConnectedElements(const pandora::Cluster *const pCluster, const bool ignoreUnavailable, ElementList &elementList) const;

Tensor stores OverlapResult for each combination of U, V and W Clusters. Crucially, it also
helps algorithms to understand the connections/ambiguities between multiple Clusters.

 const pandora::Cluster *m_pClusterU; ///< The address of the u cluster
 const pandora::Cluster *m_pClusterV; ///< The address of the v cluster
 const pandora::Cluster *m_pClusterW; ///< The address of the w cluster
 OverlapResult m_overlapResult; ///< The overlap result

Aim of tensor is to cleanly
present algs/tools with key

matching information they need

LArOverlapTensor

LArOverlapTensor::Element

MicroBooNE Pandora Workshop

OverlapResult

6

 /**
 * @brief Constructor
 *
 * @param nMatchedSamplingPoints the number of matched sampling points
 * @param nSamplingPoints the number of sampling points
 * @param chi2 the chi squared value
 * @param xOverlap the x (common-coordinate) overlap details
 */
 TransverseOverlapResult(const unsigned int nMatchedSamplingPoints, const unsigned int nSamplingPoints, const float chi2,
 const XOverlap &xOverlap);

 /**
 * @brief Constructor
 *
 * @param uMinX min x value in the u view
 * @param uMaxX max x value in the u view
 * @param vMinX min x value in the v view
 * @param vMaxX max x value in the v view
 * @param wMinX min x value in the w view
 * @param wMaxX max x value in the w view
 * @param xOverlapSpan the x overlap span
 */
 XOverlap(const float uMinX, const float uMaxX, const float vMinX, const float vMaxX, const float wMinX, const float wMaxX, 
 const float xOverlapSpan);

TransverseOverlapResult

XOverlap

• The OverlapResult stored in the tensor is simply a cache of information that may be
useful when deciding how best to match Clusters between views.

• TransverseOverlapResult records details of Cluster x-overlap, the number of sampling points
used to assess Cluster consistency, the number of matched sampling points and a 𝜒2 value.

• The tensor is examined by a series of algorithm tools, which can request Particle creation or
request changes to the 2D pattern recognition in order to address matching ambiguities.

MicroBooNE Pandora Workshop

ThreeDBase Alg

7

Owns OverlapTensor
containing OverlapResults

of a specific type.

A derived alg must calculate
the OverlapResults and

examine the tensor.

 /**
 * @brief Select a subset of input clusters for processing in this algorithm
 *
 * @param pInputClusterList address of an input cluster list
 * @param selectedClusterList to receive the selected cluster list
 */
 virtual void SelectInputClusters(const pandora::ClusterList *const pInputClusterList, pandora::ClusterList &selectedClusterList) const = 0;

 /**
 * @brief Calculate cluster overlap result and store in tensor
 *
 * @param pClusterU address of U view cluster
 * @param pClusterV address of V view cluster
 * @param pClusterW address of W view cluster
 */
 virtual void CalculateOverlapResult(const pandora::Cluster *const pClusterU, const pandora::Cluster *const pClusterV, 
 const pandora::Cluster *const pClusterW) = 0;

 /**
 * @brief Examine contents of tensor, collect together best-matching 2D particles and modify clusters as required
 */
 virtual void ExamineTensor() = 0;

 /**
 * @brief Perform any preparatory steps required, e.g. caching expensive fit results for clusters
 */
 virtual void PreparationStep();

 const pandora::ClusterList *m_pInputClusterListU; ///< Address of the input cluster list U
 const pandora::ClusterList *m_pInputClusterListV; ///< Address of the input cluster list V
 const pandora::ClusterList *m_pInputClusterListW; ///< Address of the input cluster list W

 pandora::ClusterList m_clusterListU; ///< The selected modified cluster list U
 pandora::ClusterList m_clusterListV; ///< The selected modified cluster list V
 pandora::ClusterList m_clusterListW; ///< The selected modified cluster list W

 OverlapTensor<T> m_overlapTensor; ///< The overlap tensor

ThreeDBaseAlgorithm

MicroBooNE Pandora Workshop

ThreeDBase Alg

8

 /**
 * @brief Create particles using findings from recent algorithm processing
 *
 * @param protoParticleVector the proto particle vector
 * @return whether particles were created
 */
 virtual bool CreateThreeDParticles(const ProtoParticleVector &protoParticleVector);

 /**
 * @brief Merge clusters together
 *
 * @param clusterMergeMap the cluster merge map
 * @return whether changes to the tensor have been made
 */
 virtual bool MakeClusterMerges(const ClusterMergeMap &clusterMergeMap);

 /**
 * @brief Update to reflect a cluster merge
 *
 * @param pEnlargedCluster address of the enlarged cluster
 * @param pDeletedCluster address of the deleted cluster
 */
 virtual void UpdateUponMerge(const pandora::Cluster *const pEnlargedCluster, const pandora::Cluster *const pDeletedCluster);

 /**
 * @brief Update to reflect a cluster split
 *
 * @param pSplitCluster1 address of the first cluster fragment
 * @param pSplitCluster2 address of the second cluster fragment
 * @param pDeletedCluster address of the deleted cluster
 */
 virtual void UpdateUponSplit(const pandora::Cluster *const pSplitCluster1, const pandora::Cluster *const pSplitCluster2,
 const pandora::Cluster *const pDeletedCluster);

 /**
 * @brief Update to reflect addition of a new cluster to the problem space
 *
 * @param pNewCluster address of the new cluster
 */
 virtual void UpdateForNewCluster(const pandora::Cluster *const pNewCluster);

 /**
 * @brief Update to reflect cluster deletion
 *
 * @param pDeletedCluster address of the deleted cluster
 */
 virtual void UpdateUponDeletion(const pandora::Cluster *const pDeletedCluster);

Controls common data-
management operations:

Can create Particles, split or
merge Clusters and feed

information back into tensor.

ThreeDBaseAlgorithm

MicroBooNE Pandora Workshop

ThreeDTransverseTracks Alg

9

• Select 2D Clusters (length cuts, etc.), compare all combinations between views and
calculate OverlapResult tailored to ‘transverse’ tracks, i.e. those with notable x-extent:

• For given x-coordinate, obtain sliding linear fit positions for pair of clusters (e.g. U, V)

• Use these values to predict the position of the third cluster (e.g. W)

• Compare true sliding fit position with prediction, calculating a 𝛘2 value

• Account for all possible predictions: U,V→W; VW→U; UW→V

W

V
U

Predictions: U,V→W

V

U

Candidate
2D Clusters

x

class ThreeDTransverseTracksAlgorithm : public ThreeDTracksBaseAlgorithm<TransverseOverlapResult>

Sample Cluster
consistency

across common
x-overlap region

Close agreement

MicroBooNE Pandora Workshop

ThreeDTransverseTracks Alg

10

 float pseudoChi2Sum(0.f);
 unsigned int nSamplingPoints(0), nMatchedSamplingPoints(0);

 for (unsigned int n = 0; n <= nPoints; ++n)
 {
 const float x(minX + (maxX - minX) * static_cast<float>(n) / static_cast<float>(nPoints));

 CartesianVector fitUVector(0.f, 0.f, 0.f), fitVVector(0.f, 0.f, 0.f), fitWVector(0.f, 0.f, 0.f);
 CartesianVector fitUDirection(0.f, 0.f, 0.f), fitVDirection(0.f, 0.f, 0.f), fitWDirection(0.f, 0.f, 0.f);

 if ((STATUS_CODE_SUCCESS != slidingFitResultU.GetTransverseProjection(x, fitSegmentU, fitUVector, fitUDirection)) ||
 (STATUS_CODE_SUCCESS != slidingFitResultV.GetTransverseProjection(x, fitSegmentV, fitVVector, fitVDirection)) ||
 (STATUS_CODE_SUCCESS != slidingFitResultW.GetTransverseProjection(x, fitSegmentW, fitWVector, fitWDirection)))
 {
 continue;
 }

 const float u(fitUVector.GetZ()), v(fitVVector.GetZ()), w(fitWVector.GetZ());
 const float uv2w(LArGeometryHelper::MergeTwoPositions(this->GetPandora(), TPC_VIEW_U, TPC_VIEW_V, u, v));
 const float uw2v(LArGeometryHelper::MergeTwoPositions(this->GetPandora(), TPC_VIEW_U, TPC_VIEW_W, u, w));
 const float vw2u(LArGeometryHelper::MergeTwoPositions(this->GetPandora(), TPC_VIEW_V, TPC_VIEW_W, v, w));

 const float deltaU((vw2u - u) * fitUDirection.GetX());
 const float deltaV((uw2v - v) * fitVDirection.GetX());
 const float deltaW((uv2w - w) * fitWDirection.GetX());

 const float pseudoChi2(deltaW * deltaW + deltaV * deltaV + deltaU * deltaU);
 pseudoChi2Sum += pseudoChi2;
 ++nSamplingPoints;

 if (pseudoChi2 < m_pseudoChi2Cut)
 ++nMatchedSamplingPoints;
 }

ThreeDTransverseTracksAlgorithm

Define x sampling point
in overlap region Use sliding linear fits to extract

fit positions and directions at
sampling point

Make predictions:  
U,V→W; VW→U; UW→V

Count matched sampling
points and calculate 𝜒2

MicroBooNE Pandora Workshop 11

/**
 * @brief TransverseTensorTool class
 */
class TransverseTensorTool : public pandora::AlgorithmTool
{
public:
 typedef ThreeDTransverseTracksAlgorithm::TensorType TensorType;
 typedef std::vector<TensorType::ElementList::const_iterator> IteratorList;

 /**
 * @brief Run the algorithm tool
 *
 * @param pAlgorithm address of the calling algorithm
 * @param overlapTensor the overlap tensor
 *
 * @return whether changes have been made by the tool
 */
 virtual bool Run(ThreeDTransverseTracksAlgorithm *const pAlgorithm, TensorType &overlapTensor) = 0;
};

 typedef std::vector<TransverseTensorTool*> TensorToolList;
 TensorToolList m_algorithmToolList; ///< The algorithm tool list

TransverseTensor Tools

ThreeDTransverseTracksAlgorithm

• ThreeDTransverseTracksAlgorithm defines interface for its TransverseTensor tools:

• Provides tools with Algorithm address to enable access to its cluster merging/splitting and
tensor updating functionality. Also provides tools with direct access to the tensor.

• Algorithm owns an ordered list of TransverseTensorTools, which is populated according to
XML configuration. These tools will be used to examine/process the tensor each event.

MicroBooNE Pandora Workshop

TransverseTensor Tools

12

 <algorithm type = "LArThreeDTransverseTracks">
 <InputClusterListNameU>ClustersU</InputClusterListNameU>
 <InputClusterListNameV>ClustersV</InputClusterListNameV>
 <InputClusterListNameW>ClustersW</InputClusterListNameW>
 <OutputPfoListName>TrackParticles3D</OutputPfoListName>
 <TrackTools>
 <tool type = "LArClearTracks"/>
 <tool type = "LArLongTracks"/>
 <tool type = “LArOvershootTracks">
 <SplitMode>true</SplitMode>
 </tool>
 <tool type = “LArUndershootTracks">
 <SplitMode>true</SplitMode>
 </tool>
 <tool type = “LArOvershootTracks">
 <SplitMode>false</SplitMode>
 </tool>
 <tool type = “LArUndershootTracks">
 <SplitMode>false</SplitMode>
 </tool>
 <tool type = "LArMissingTrackSegment"/>
 <tool type = "LArTrackSplitting"/>
 <tool type = “LArLongTracks">
 <MinMatchedFraction>0.75</MinMatchedFraction>
 <MinXOverlapFraction>0.75</MinXOverlapFraction>
 </tool>
 <tool type = "LArMissingTrack"/>
 </TrackTools>
 </algorithm>

void ThreeDTransverseTracksAlgorithm::ExamineTensor()
{
 unsigned int repeatCounter(0);

 for (TensorToolList::const_iterator iter = m_algorithmToolList.begin(),  
 iterEnd = m_algorithmToolList.end(); iter != iterEnd;)
 {
 if ((*iter)->Run(this, m_overlapTensor))
 {
 iter = m_algorithmToolList.begin();

 if (++repeatCounter > m_nMaxTensorToolRepeats)
 break;
 }
 else
 {
 ++iter;
 }
 }
}

• TransverseTensorTools have an XML-defined ordering:

• If tool makes a change to the tensor, by creating a new Particle or modifying the 2D Clusters,
the full list of tools runs again, repeating from the first tool. Run until no further changes.

• Promotes an approach where first tool makes Particles for unambiguous Cluster matches
and later tools make 2D Cluster changes to remove ambiguities.

ThreeDTransverseTracksAlgorithm

XML

MicroBooNE Pandora Workshop

ClearTracks Tool

13

1:1:1

Find unambiguous elements in the tensor,
demanding that the common x-overlap is
90% of the x-span for all three clusters.

Aim: group
together 3 x 2D

clusters in a new
track Particle

x

V

U

W
• The first tool looks to directly build

Particles from unambiguous
groupings of three Clusters.

• Examine tensor to find regions where
only three Clusters are connected; one
from each of U, V and W views.

• Quality cuts are applied to the
TransverseOverlapResult and, if passed,
a new Particle is created.

• The common x-overlap must be >90%
of the x-span for all Clusters at this
stage in the processing.

MicroBooNE Pandora Workshop

LongTracks Tool

14

Resolve obvious ambiguities: clusters are
matched in multiple configurations, but one
tensor element is much better than others.

Ringed clusters in
V and W views

also match U
Cluster, so U

Cluster ambiguous

e.g. 1:2:2

x

V

U

W• The LongTracks tool aims to address
any ambiguities in the tensor that
have an obvious resolution.

• Example shown has two small delta-rays
near a long cosmic-ray track.

• Clusters are matched in multiple
configurations; tensor is not diagonal.

• One of TransverseOverlapResults is,
however, significantly better than others.

• Tensor element shows better x-overlap
and more matched sampling points.

• Decision is to create a Particle
representing long cosmic-muon track.

• Delta-rays can then be associated with
cosmic-ray Particle at a later stage.

MicroBooNE Pandora Workshop 15

 ProtoParticleVector protoParticleVector;
 ClusterList usedClusters;

 ClusterVector sortedKeyClusters;
 overlapTensor.GetSortedKeyClusters(sortedKeyClusters);

 for (const Cluster *const pKeyCluster : sortedKeyClusters)
 {
 if (!pKeyCluster->IsAvailable())
 continue;

 TensorType::ElementList elementList;
 overlapTensor.GetConnectedElements(pKeyCluster, true, elementList);

 IteratorList iteratorList;
 this->SelectLongElements(elementList, usedClusters, iteratorList);

 // Check that elements are significantly longer than any directly connected elements
 for (IteratorList::const_iterator iIter = iteratorList.begin(), iIterEnd = iteratorList.end(); iIter != iIterEnd; ++iIter)
 {
 if (LongTracksTool::HasLongDirectConnections(iIter, iteratorList))
 continue;

 if (!LongTracksTool::IsLongerThanDirectConnections(iIter, elementList, m_minMatchedSamplingPointRatio, usedClusters))
 continue;

 ProtoParticle protoParticle;
 protoParticle.m_clusterListU.insert((*iIter)->GetClusterU());
 protoParticle.m_clusterListV.insert((*iIter)->GetClusterV());
 protoParticle.m_clusterListW.insert((*iIter)->GetClusterW());
 protoParticleVector.push_back(protoParticle);

 usedClusters.insert((*iIter)->GetClusterU());
 usedClusters.insert((*iIter)->GetClusterV());
 usedClusters.insert((*iIter)->GetClusterW());
 }
 }

 return pAlgorithm->CreateThreeDParticles(protoParticleVector);

Implementation: LongTracks Tool

Get connected elements
from tensor

Select subset with long
Clusters and good overlap

Ensure that selected element is
better than alternatives

Ask alg to make all Particles found

Specify Particle details and
monitor Cluster usage in tool

MicroBooNE Pandora Workshop

OvershootTracks Tool

16

Two clusters in
W and V views,

matched to a
common cluster

in U view. Two
tensor elements.

1:2:2

Identify whether this is a true 3D kink. If so,
split U cluster at relevant position and feed

back into tensor (diagonalise).

x

V

U

W
• The OvershootTracksTool examines

the tensor to find Cluster matching
ambiguities of the form e.g. 1:2:2

• Two Clusters in V view and two Clusters
in W view connect at common x.

• Single common Cluster in U view, which
spans full x-extent of the Clusters.

• Use all connected Clusters to assess
whether this is a true 3D kink topology.

• If kink is identified, split U Cluster at
relevant x coordinate and feed two new
U Clusters back into tensor.

• Initial ClearTracks tool then able to
identify two unambiguous groupings of
three Clusters and form two Particles.

MicroBooNE Pandora Workshop

UndershootTracks Tool

17

Two clusters in W
view, matched to

common clusters in
U and V views. Two

tensor elements.

1:1:2

Find that this isn’t truly a kink in 3D, so
merge the clusters in the W view and feed

back into tensor.

x

V

U

W• The UndershootTracksTool examines
the tensor to find Cluster matching
ambiguities of the form e.g. 1:1:2

• Two Clusters in W view matched to
common Clusters in the U and V views,
leading to conflicting tensor elements.

• Examine connected Clusters to assess
whether this is a 3D kink topology (impl.
shared with OvershootTracksTool).

• If a 3D kink is not found, the two W
Clusters can be merged and a single W
Cluster fed back into the tensor.

• Single new Particle can then be created
by the ClearTracksTool.

MicroBooNE Pandora Workshop

3D Kink Finding

18

Truly a kink: split merged clusters

e.g. 1:2:2

x

V

U

W

Not a kink: merge split clusters

e.g. 1:1:2

x

V

U

W

To first order (in 2D reco
mistakes), should always:

• Split single Cluster for
e.g. 1:2:2 configs.

• Merge pair of Clusters
for e.g. 1:1:2 configs.

3D kink finding helps to
cover second order cases.

Examine 3D directions
either side of feature point.

MicroBooNE Pandora Workshop

MissingTrackSegment Tool

19

Unambiguous
connections, but

U cluster has
reduced x-span in
comparison to V

and W clusters

1:1:1

Use V and W clusters to predict continued
track position in U view. Add clusters

omitted by 2D pattern-recognition failures.

x V

U

W

• The MissingTrackSegmentTool tries
to address discrepancies between
Cluster x-overlap.

• Uses sliding fit results from two long
Clusters to predict the continued track
position in the short Cluster view.

• Can add available small Clusters to the
end of the short Cluster to address the
discrepancy.

• Cluster combinations may then satisfy
selection requirements of ClearTracks
tool, which can create a Particle.

MicroBooNE Pandora Workshop

TrackSplitting Tool

20

1:1:1

x

V

U

W

U and W cluster minimum x-positions
match closely, plus there is evidence of a gap

in the V cluster: split the cluster.

Unambiguous
connections, but V
Cluster has much

larger x-span than
U and W clusters

• The TrackSplittingTool performs the
reverse operation to address Cluster
x-overlap discrepancies.

• Look for cases where Cluster in a single
view appears to be anomalously long.

• Some evidence of a gap in the Cluster,
so split to ensure Cluster consistency.

• MissingTrackSegment and TrackSplitting
tools - logic careful to avoid repeatedly
applying/undoing same operations.

MicroBooNE Pandora Workshop

MissingTrack Tool

21

2:2:1

Small U and V
Clusters match W
Cluster, but this is

unavailable: already
in a long Particle

If the matching is very good, and it seems
that there must simply be two overlapping

tracks, create a two-cluster particle.

x

V

U

W

Nearby  
clusters

Unavailable• The MissingTracksTool looks for
cases where particle features may be
obscured in one view.

• Single Cluster may represent multiple
overlapping particles in one view.

• Tool looks for appropriate Cluster
overlap using the relationship
information available from tensor.

• If selection satisfied, can create a Particle
consisting of just two Clusters.

MicroBooNE Pandora Workshop

TensorVisualisation Tool

22

>	Running	Algorithm:	0x7feef6db4c80,	LArThreeDTransverseTracks	
---->	Running	Algorithm	Tool:	0x7feef6db4ee0,	LArTransverseTensorVisualization	
Connections:	nU	3,	nV	2,	nW	1,	nElements	3	
Element	0:	MatchedFraction	1,	MatchedSamplingPoints	18,	xSpanU	1.18993,	xSpanV	8.50827,	xSpanW	14.9815,	xOverlapSpan	1.18861	
Press	return	to	continue	...	

Element	1:	MatchedFraction	1,	MatchedSamplingPoints	81,	xSpanU	6.87953,	xSpanV	8.50827,	xSpanW	14.9815,	xOverlapSpan	6.80493	
Press	return	to	continue	...	

Element	2:	MatchedFraction	1,	MatchedSamplingPoints	187,	xSpanU	13.9872,	xSpanV	14.1038,	xSpanW	14.9815,	xOverlapSpan	13.6472	
Press	return	to	continue	...

x

V

U

W
Element 0 Element 1 Element 2

V

U

W

V

U

W

x x

Result here: picks Element 2 and also makes a separate, two-Cluster Particle

MicroBooNE Pandora Workshop

Circles indicate
reconstructed

start/end points
of 2D clusters

ThreeDLongitudinalTracks Alg

23

U

x

Reconstructed start
and end points for 2D

Clusters in U view

• ThreeDLongitudinalTracks Algorithm
stores a different OverlapResult type
in its tensor and uses different tools.

• Examine case where x-extent of a
Cluster grouping is small.

• There are too many ambiguities when
trying to sample Clusters at fixed x.

• Such longitudinal Clusters typically left
untouched by TransverseTracks alg.

• New alg postulates that Cluster start and
end positions match in U, V and W views.

• Allows creation of 3D end-points, so
defining a 3D trajectory to assess the
Cluster compatibility.

• Simple tools to create Particles for clear
matches and address obvious ambiguities.

class ThreeDLongitudinalTracksAlgorithm : public ThreeDTracksBaseAlgorithm<LongitudinalOverlapResult>

MicroBooNE Pandora Workshop

ThreeDTrackFragments Alg

24

1:1:fragments

Clean track in U view

Clean track in V view

Many broken cluster 
fragments in W view

x

• Look for situations with single clean
Clusters in two views, associated to
multiple fragments in third view.

• A different type of algorithm with a
different type of OverlapResult stored in
its tensor.

• OverlapResult stores list of matched Hits
and their parent Clusters, plus fraction of
projected positions resulting in a match.

• Fragment Clusters can be merged,
enabling the Particle to be recovered.

class ThreeDTrackFragmentsAlgorithm : public ThreeDTracksBaseAlgorithm<FragmentOverlapResult>

MicroBooNE Pandora Workshop

ParticleRecovery Alg

25

Aggressively match any
remaining, unassociated

track-like Clusters.

Simplified approach and
drop requirement for

matches in all three views.

void ParticleRecoveryAlgorithm::ExamineTensor(const SimpleOverlapTensor &overlapTensor) const
{
 for (const Cluster *const pKeyCluster : overlapTensor.GetKeyClusters())
 {
 ClusterList clusterListU, clusterListV, clusterListW;

 overlapTensor.GetConnectedElements(pKeyCluster, true, clusterListU, clusterListV, clusterListW);
 const unsigned int nU(clusterListU.size()), nV(clusterListV.size()), nW(clusterListW.size());

 if ((0 == nU * nV) && (0 == nV * nW) && (0 == nW * nU))
 continue;

 if ((1 == nU * nV * nW) && this->CheckConsistency(clusterListU, clusterListV, clusterListW))
 {
 this->CreateTrackParticle(clusterListU, clusterListV, clusterListW);
 }
 else if ((0 == nU * nV * nW) && ((1 == nU && 1 == nV) || (1 == nV && 1 == nW) || (1 == nW && 1 == nU)))
 {
 this->CreateTrackParticle(clusterListU, clusterListV, clusterListW);
 }
 else
 {
 // TODO May later choose to resolve simple ambiguities, e.g. of form nU:nV:nW == 1:2:0
 }
 }
}

 /**
 * @brief Add an association between two clusters to the simple overlap tensor
 *
 * @param pCluster1 address of cluster 1
 * @param pCluster2 address of cluster 2
 */
 void AddAssociation(const pandora::Cluster *const pCluster1, const pandora::Cluster *const pCluster2);

 pandora::ClusterList m_keyClusters; ///< The list of key clusters
 ClusterNavigationMap m_clusterNavigationMapUV; ///< The cluster navigation map U->V
 ClusterNavigationMap m_clusterNavigationMapVW; ///< The cluster navigation map V->W
 ClusterNavigationMap m_clusterNavigationMapWU; ///< The cluster navigation map W->U

SimpleOverlapTensor

ParticleRecoveryAlgorithm

MicroBooNE Pandora Workshop

3D Hit Creation

26

Animated gif

• Particles contain 2D Clusters from (typically) multiple readout planes. For each input
2D Hit in a Particle, attempt to create a new 3D Hit or “SpacePoint”.

• Mechanics differ depending upon Cluster topologies. Series of Algorithm tools used for:
• Hits on transverse tracks with Clusters in all views,
• Hits on longitudinal tracks with Cluster in all views,
• Hits on tracks that are multivalued at specific x coordinates,
• Hits on tracks with Clusters in only two views,
• Hits in showers, etc.

http://www.hep.phy.cam.ac.uk/~marshall/Workshop/bnb_nue_cosmic.gif

MicroBooNE Pandora Workshop

3D Hit Creation Tools

27

 /**
 * @brief Create a new three dimensional hit from a two dimensional hit
 *
 * @param pCaloHit2D the address of the two dimensional calo hit, for which a new three dimensional hit is to be created
 * @param position3D the position vector for the new three dimensional calo hit
 * @param pCaloHit3D to receive the address of the new three dimensional calo hit
 */
 void CreateThreeDHit(const pandora::CaloHit *const pCaloHit2D, const pandora::CartesianVector &position3D, 
 const pandora::CaloHit *&pCaloHit3D) const;

 /**
 * @brief Get the list of 2D calo hits in a pfo for which 3D hits have and have not been created
 *
 * @param pPfo the address of the pfo
 * @param usedHits to receive the list of two dimensional calo hits for which three dimensional hits have been created
 * @param remainingHits to receive the list of two dimensional calo hits for which three dimensional hits have not been created
 */
 void SeparateTwoDHits(const pandora::ParticleFlowObject *const pPfo, pandora::CaloHitList &usedHits,
 pandora::CaloHitList &remainingHits) const;

 typedef std::vector<HitCreationBaseTool*> HitCreationToolList;
 HitCreationToolList m_algorithmToolList; ///< The algorithm tool list

 /**
 * @brief Run the algorithm tool
 *
 * @param pAlgorithm address of the calling algorithm
 * @param pPfo the address of the pfo
 * @param inputTwoDHits the list of input two dimensional hits
 * @param newThreeDHits to receive the new three dimensional hits
 */
 virtual void Run(ThreeDHitCreationAlgorithm *const pAlgorithm, const pandora::ParticleFlowObject *const pPfo, 
 const pandora::CaloHitList &inputTwoDHits, pandora::CaloHitList &newThreeDHits) = 0;

ThreeDHitCreationAlgorithm

HitCreationBaseToolAlgorithm passes
Particle and all

unused 2D Hits to
an XML-configured,
ordered list of tools.

MicroBooNE Pandora Workshop

Approaches to 3D Hit Creation

28

 /**
 * @brief Get the y, z position that yields the minimum chi squared value with respect to specified u, v and w coordinates
 *
 * @param u the u coordinate
 * @param v the v coordinate
 * @param w the w coordinate
 * @param sigmaU the uncertainty in the u coordinate
 * @param sigmaV the uncertainty in the v coordinate
 * @param sigmaW the uncertainty in the w coordinate
 * @param y to receive the y coordinate
 * @param z to receive the z coordinate
 * @param chiSquared to receive the chi squared value
 */
 virtual void GetMinChiSquaredYZ(const double u, const double v, const double w, const double sigmaU, const double sigmaV, const double sigmaW,
 double &y, double &z, double &chiSquared) const = 0;

 typedef std::pair<double, pandora::HitType> PositionAndType;

 /**
 * @brief Get the y, z position that corresponds to a projection of two fit positions onto the specific wire associated with a hit
 *
 * @param hitPositionAndType the hit position and hit type
 * @param fitPositionAndType1 the first fit position and hit type
 * @param fitPositionAndType2 the second fit position and hit type
 * @param sigmaHit the uncertainty in the hit coordinate
 * @param sigmaFit the uncertainty in the fit coordinates
 * ...
 */
 virtual void GetProjectedYZ(const PositionAndType &hitPositionAndType, const PositionAndType &fitPositionAndType1,
 const PositionAndType &fitPositionAndType2, const double sigmaHit, const double sigmaFit, double &y, double &z, double &chiSquared) const = 0;

• For simple transverse tracks, with Clusters in all views, approach is to take 2D Hit in
one view e.g. U and sliding fit positions for e.g. V and W Clusters at same x coordinate.

• Function provided as part of Coordinate Transformation Plugin (registered by client app)
provides analytic 𝜒2 minimisation to provide optimal y and z coordinates at specified x.

• Can also run in mode whereby chosen y and z coordinates are such that they represent a
projection of the two fit positions onto the specific wire associated with the 2D Hit.

MicroBooNE Pandora Workshop

Remaining Reconstruction Steps

29

• For cosmic-ray reconstruction pass, any remaining Hits (not in a track Particle) are
reclustered using a simple, proximity-based algorithm to find delta-rays:

• Use a few topological association algs to improve delta-ray completeness before matching
delta-ray Clusters between views and identifying appropriate cosmic-ray parent Particle.

• For neutrino pass, still need to find interaction Vertex, perform 2D shower reco (adding
branches to long Clusters representing shower spines) and build 3D shower Particles.

• Discussed in Talks 6 and 7.

Track-like

Many small
shower-like

clusters

Daughter delta ray
(shower) particles

Cosmic ray 𝜈e CC

MicroBooNE Pandora Workshop 30

Questions?

