Mu2e Grounding & Shielding Review
Stopping Target Monitor subsystem

A. Palladino, J. Miller, G. Ginther
5/10/16
Mu2e Stopping Target Monitor

General philosophy:

• Determine the rate of muon stops in the Stopping Target to provide normalization for Mu2e.
 ▪ Measure X-rays and gamma-rays from muon stops/captures in the Stopping Target
 ▪ Use high-purity germanium detector located at far end of hall
 ▪ Germanium detector will require power and ground isolated from motors / vacuum pumps at the far end of the hall
 ▪ A calibration source may require a mechanical arm to position it on and off the beam axis. Just mechanical, no signals here, so no shielding/grounding concerns.
Mu2e Stopping Target Monitor

Location:

Calibration source

Ge detector
Mu2e Stopping Target Monitor

- Stopping Target
- MBS
- IFB
- ECS
- CRV-D
- Permanent Sweeper Magnet
- Field-of-view Collimator
- Spot-size Collimator
- HPGe Detector(s)

~34 m
Mu2e Stopping Target Monitor

Located at far end of hall:
- Unlikely to act as a source of noise for other subsystems.
- Unlikely to act as antenna picking up noise from other subsystems.
Mu2e Stopping Target Monitor

Type of detector:
- High-purity coaxial n-type germanium detector

Location of FEE:
- Electronics rack located right next to the HPGe detector, far from PS, TS, and DS
- Estimate 3kW power consumption
- HV supply ~3kV in electronics rack
- Interface to TDAQ is optical fiber
- No direct interface to other subsystems
Mu2e Stopping Target Monitor

- **Power**
 - HV: 3 kV
 - LV
 - Clock divider
 - Veto / Gate
 - LaBr detector
 - HPGe detector

- **Ground**

- **Electronics Rack**
 - Timing: 500 MHz WFD
 - Energy: 20 MHz 16 bit WFD
 - Timing Filter Amplifier

- **Optical Isolation**
 - TDAQ: POT pulse
 - TDAQ: Control Room
Mu2e Stopping Target Monitor

Signals from AlCap 2015:

347 keV, sigma 0.884 keV

1809 keV, sigma 1.88 keV
Mu2e Stopping Target Monitor

Implementation plan:

- Isolated power will be provided at the end of the hall
- STM electronics will connect to Detector Ground Branch
- Ge detector will be vibrationally isolated from the stand (e.g. rubber boots)
- Signal cables from Ge detector to electronics rack will have standard shielding, where they will be digitized, then sent via optical fiber to TDAQ
- Ge will need to be cooled with LN, no shielding/grounding concerns
Mu2e Stopping Target Monitor

Location of Isolated Ground Connection
Mu2e Stopping Target Monitor

1. Does STM address potential noise problems? Will STM achieve desired performance?
 – Electronics are optically isolated from other subsystems.

2. Is the design technically sound? Any outstanding issues? Concerns?
 – Optical isolation and commercial electronics are well understood. No known outstanding issues.

3. Significant risks? Mitigation plans?
 – No known risks.

4. Safety concerns?
 – ~3 kV HV: Standard High-Voltage safety protocols will be followed