
Marc Paterno
art Workshop
17 June 2016

Using gallery for data access

New UPS package: gallery

17/6/162

• art 2.0 was released the week of May 16.
• A major feature was the separation of the event-processing

framework code in art from the persisted data structure
support, which was moved to a new UPS product, canvas.

• At the same time, we released the first version of gallery,
which is a product that supports reading art/ROOT data files
outside of the art framework executable.

• At the same time, LArSoft has introduced three new UPS
products, containing the data products defined by LArSoft,
and the data products in nutools were moved into nusimdata.

• The distribution bundle larsoftobj was introduced to give a
single-command installation for all the UPS products needed
to use gallery to read LArSoft-created art/ROOT files.

M. Paterno | Using gallery for data access

• As of the time of this presentation, installation is available for:
– Yosemite
– Ubuntu 14.04 LTS
– SLF 6.x and 7.x (suitable for RHEL-based distributions, e.g.

CentOS)
• Installation instructions are at

http://scisoft.fnal.gov/scisoft/bundles/larsoftobj/ (look for the
newest version, and view the HTML file for instructions)

• It is the usual “run pullProducts with the right arguments”.
• Caveat: PyROOT and ROOT macro support on Yosemite is

limited by an incompatibility in ROOT’s LLVM version; the
ROOT team are working on moving to a newer version of
LLVM which is needed for fixing the problem.

Installation

17/6/163 M. Paterno | Using gallery for data access

• gallery provides access to event data in art/Root files outside
the art event processing framework executable:
– without the use of EDProducers, EDAnalyzers, etc., thus
– without the facilities of the framework (e.g. callbacks from

framework transitions, writing of art/ROOT files).
• You can use gallery to write:

– compiled C++ programs,
– ROOT macros,
– Using PyROOT, Python scripts.

• You can invoke any code you want to compile against and
link to.
– Be careful to avoid introducing binary incompatibilities.

What is gallery for?

17/6/164 M. Paterno | Using gallery for data access

• ./pullProducts <dir> <os> larsoftobj-v1_02_00 e10 prof
• os can be slf6, slf7, d14, u14

Installation (suitable for this demo)

17/6/16 M. Paterno | Using gallery for data access5

gallery

0.5 MB (OSX)
3.6 MB (Linux)

canvas

23.1 MB (OSX)
126.9 MB (Linux)

boost

1069.2 MB (OSX)
1355.2 MB (Linux)

support

6.9 MB (OSX)
7.9 MB (Linux)

cppunit

11.7 MB (OSX)
21.1 MB (Linux)

gcc

185.1 MB (OSX)
617.7 MB (Linux)

root

1916.0 MB (OSX)
1841.3 MB (Linux)

tbb

12.5 MB (OSX)
15.9 MB (Linux)

larsoftobj

16.6 MB (OSX)
63.4 MB (Linux)

• 3.2 GB OSX (43 MB
from gallery+)

• 4.0 GB Linux (178 MB
from gallery+)

• This is an early version of gallery: contributions (within the
constraints of given above) are welcome.

Contributions welcome

17/6/166 M. Paterno | Using gallery for data access

Demonstration

17/6/167

• Using	 compiled	 C++
• Using	 a	 ROOT	 macro
• Using	 PyROOT

Please	 ask	 questions.	 Demos	 will	 be	 done	 on
Ubuntu	 14.04	 and	 Yosemite,	 but	 everything	 works	 on	 SLF6,	
SLF7,	 and	 related	 RHEL	 6&7	 distributions.

M. Paterno | Using gallery for data access

• The compiled C++ program option is the most robust.
• The interactive ROOT macro usage allows the flexibility of

interacting with ROOT objects.
– A bug in ROOT can cause crashes when using ACLiC.
– Until we have a fix from ROOT, avoid ACLiC here.

• PyROOT is the least robust.
– Many failures on OSX due to an old LLVM version in ROOT.
– Specific failures on Linux because of limitations in PyROOT’s

data model.
• My recommendation: use compiled C++ whenever possible,

and interactive ROOT when you really want the interactivity.
Use PyROOT only when you require the user of other Python
libraries; be prepared to work around defects in the model.

Caveats and recommendations

17/6/16 M. Paterno | Using gallery for data access8

