
Multithreaded Explorations with Geant4

Lisa Goodenough
Argonne National Lab
!
art Users Meeting
June 17, 2016

The art-HPC Team and Contributors

▪ at Argonne
- Lisa Goodenough
- Tom LeCompte
!

▪ at Fermilab
- Jim Kowalkowski
- Adam Lyon
- Marc Paterno
- James Stapleton
!
Special thanks to Kyle Knoepfel, Chris Green, Lynn Garren, and Jessie
Melhuish (U Kentucky) for help on this project.

2

The art-HPC Team is a small group of physicists and computer scientists
working to enable the g-2 simulation with art to run on high performance
computing (HPC) systems.

Why Utilize High Performance Computing Resources?

▪ Because we can. The resources are out there and they have
been made available to us when we have asked.
!

▪ Because memory and its access and I/O are limitations of he
current paradigm. Both can be alleviated with the use HPCs.

3

HPC Resources -
Argonne Leadership Computing Facility (ALCF)

▪ Mira
- 10 PFLOPS IBM Blue Gene/Q supercomputer
- processor: sixteen 1.6 GHz Power PC A2 cores, each with 4 hardware threads
- 48 racks; 49,152 nodes; 786,432 cores; 16 GB RAM/node
- users have access to a 24 PB GPFS file system and the HPSS data archive
- compile and link procedures are performed on login nodes with a cross-

compilation technique
- gcc, xl, and bgclang compilers available
!

▪ Cetus and Vesta
- same architecture, software environment, and file systems as Mira
- Cetus: primary role is to be used for debugging of problems that occurred on

Mira; 65,536 cores
- Vesta: used for testing and development work; 32,768 cores

4

HPC Resources -
National Energy Research Scientific Computing Center (NERSC)

5

▪ Cori
- Phase 1 (in operation now): 1.92 PFLOPS Cray XC40; two 2.3 GHz 16-core

Haswell processors per node;1630 compute nodes —> 52,160 cores; 128GB
RAM/node

- Phase 2 (to be installed and merged with Phase 1 mid-2016): CrayXC based
on second generation of Intel Xeon Phi products; over 9300 nodes, 64
cores/node —> 632,400 cores, 96 GB Ram/node

- users have access to HPSS data archive
- compile and link procedures are performed on login nodes with a cross-

compilation technique
- Intel, Cray and GNU compilers available
!

▪ Edison
- Cray XC30, delivers 2.57 petaflops at peak performance
- 5576 compute nodes; 24 cores/node —> 133,824 cores; 64 GB RAM/node
- Intel Hyper-Threading enabled so you can run with 48 logical cores/node

The Plan of Attack

▪ Upgrade the g-2 software to Geant4 v10.x - this does not require the use of
multithreading

▪ Get g-2 code built on NERSC and ALCF machines
▪ Upgrade g-2 code to incorporate Geant4’s multithreading capabilities
▪ Make changes to art to incorporate thread safety into events
▪ Run on test machine (e.g. at Argonne) with 1 thread, 2 threads, 10 threads
▪ Get g-2MT code built and running on NERSC and ALCF machines
▪ Test the scaling, figure out the load balancing
▪ Simulate some large number of events. 1012 or more muons needed to

reach desired statistical sensitivity. We would like to contribute
significantly to this need.

6

Phase 1, in which multithreading is completely managed within G4MT:

Geant4MT - Event Level Parallelism
Geant4 10.x in MT mode offers ‘event level parallelism’. Each worker
thread is tasked to simulate one or more events independently, while the
master thread controls the overall initialization and also distributing events
and merging results to/from worker threads.

7taken from Hrivnacova and Gumplinger

The g-2 MT Event Loop

8

• In MT mode, a single art event consists of some number N of Geant4 events,
which is set by the G4MTRunManager in main().
!

• The multithreading is controlled by Geant4. Once the N events are
complete, data accumulation is done in art. The art event is currently not
thread safe.

art gives control to
G4 in art::produce

G4MTRunManager
starts N threads and

makes M events
thus creating M G4 events

G4::Event

G4::Event

G4::Event

art::Event

Geant4MT - Shared versus Thread Local Objects

▪ In MT mode, objects that are invariant during the event loop are shared
among threads. This helps to reduce the memory footprint.
- Geometry and physics tables
- User initialization classes G4VUserDetectorConstruction,

G4VUserPhysicsList, and newly introduced G4VUserActionInitialization
!

▪ Objects that are transient during the event loop are thread-local. Thread-
local objects are instantiated and initialized at the end of the first
execution of G4RunManager::Initialize().
- Events, tracks, steps, trajectories, hits, etc.
- Several G4 manager classes such as EventManager, TrackingManager,

SteppingManager, TransportationManager, GeometryManager,
FieldManager, Navigator, and SensitiveDetectorManager

- User action classes and sensitive detector classes

9

Code Modifications Made to Incorporate G4MT

▪ We have moved user-action instantiation from artg4Main_module.cc to the
G4UserActionInitialization class.

10

artg4Main BEFORE: artg4Main AFTER:

Code Modifications Made to Incorporate G4MT

▪ We have moved user-action instantiation from artg4Main_module.cc to the
G4UserActionInitialization class.

11

New ArtG4ActionInitialization class AFTER:

Code Modifications Made to Incorporate G4MT

12

▪ We use G4MTRunManager exclusively in main(). For sequential mode, we
use runManager_ —> SetNumberOfThreads(1).
!
!
!
!
!
!
!
!
!

▪ We also determine the number of G4 event per art event.

Code Modifications Made to Incorporate G4MT
▪ We have split detector construction, putting sensitive detectors and fields, thread local

quantities, in the new ConstructSDandField method. Shared quantities such as definitions
of materials, volumes, etc. are left in the Construct method.

13

AFTER:BEFORE:

Code Modifications Made to Incorporate G4MT

▪ We have transformed G4Allocator to G4ThreadLocal G4Allocator for hit and
trajectory classes.

14

AFTER:BEFORE:

Additional Modifications One May Need/Can Make

!
▪ If data is accumulated in the RunAction classes, then G4Run’s ‘Merge’

method would need to be implemented. Our data accumulation is all done
within the art event using the art framework. So, we don’t need to worry
about G4Run’s ‘Merge’ method at this time.
!

▪ Custom thread behavior is available using G4UserThreadInitialization. This
could be useful/interesting down the road.
- Change the way events are assigned to threads, e.g. from the default

run-robin to a queue-based model
- Add user-specific initialization code in thread initialization/termination

functions
- Completely replace the threading mode (by default based on pthreads)

to allow custom threading frameworks

15

The Plan of Attack

▪ Upgrade the g-2 software to Geant4 v10.x - this does not require the use of
multithreading

▪ Get g-2 code built on NERSC and ALCF machines
▪ Upgrade g-2 code to incorporate Geant4’s multithreading capabilities
▪ Make changes to art to incorporate thread safety into events
▪ Run on test machine (e.g. at Argonne) with 1 thread, 2 threads, 10 threads
▪ Get g-2MT code built and running on NERSC and ALCF machines
▪ Test the scaling, figure out the load balancing
▪ Simulate some large number of events. 1012 or more muons needed to

reach desired statistical sensitivity. We would like to contribute
significantly to this need.

16

Phase 1, in which multithreading is completely managed within G4MT:

X

X
X

The Future

17

• In Phase 1, the multithreading is completely managed within the G4 event
loop.
!

• We would like to move into a Phase 2 in which a project called ‘multi-
schedule’ art is utilized.
!

• In multi-schedule art, the thread scheduling is managed by Intel Thread
Building Blocks (TBB). The event coordination and workflow is managed by
the art Scheduler.
!

• In this way, multiple events could be active at the same time across each
thread.

