Argonne°

NATIONAL LARORATORY

(@ ENERGY

The art-HPC Team and Contributors

The art-HPC Team is a small group of physicists and computer scientists
working to enable the g-2 simulation with art to run on high performance
computing (HPC) systems.

= at Argonne
— Lisa Goodenough
- Tom LeCompte

= at Fermilab
- Jim Kowalkowski
- Adam Lyon
— Marc Paterno
- James Stapleton

Special thanks to Kyle Knoepfel, Chris Green, Lynn Garren, and Jessie
Melhuish (U Kentucky) for help on this project.

..
Why Utilize High Performance Computing Resources?

= Because we can. The resources are out there and they have
been made available to us when we have asked.

» Because memory and its access and I/0 are limitations of he
current paradigm. Both can be alleviated with the use HPCs.

HPC Resources -
Argonne Leadership Computing Facility (ALCF)

= Mira

10 PFLOPS IBM Blue Gene/Q supercomputer

processor: sixteen 1.6 GHz Power PC A2 cores, each with 4 hardware threads
48 racks; 49,152 nodes; 786,432 cores; 16 GB RAM/node

users have access to a 24 PB GPFS file system and the HPSS data archive

compile and link procedures are performed on login nodes with a cross-
compilation technique

gcc, xl, and bgclang compilers available

= Cetus and Vesta

same architecture, software environment, and file systems as Mira

Cetus: primary role is to be used for debugging of problems that occurred on
Mira; 65,536 cores

Vesta: used for testing and development work; 32,768 cores

HPC Resources -
National Energy Research Scientific Computing Center (NERSC)

= Cori

Phase 1 (in operation now): 1.92 PFLOPS Cray XC40; two 2.3 GHz 16-core
Haswell processors per node;1630 compute nodes —> 52,160 cores; 128GB
RAM/node

Phase 2 (to be installed and merged with Phase 1 mid-2016): CrayXC based
on second generation of Intel Xeon Phi products; over 9300 nodes, 64
cores/node —> 632,400 cores, 96 GB Ram/node

users have access to HPSS data archive

compile and link procedures are performed on login nodes with a cross-
compilation technique

Intel, Cray and GNU compilers available

= Edison

Cray XC30, delivers 2.57 petaflops at peak performance
5576 compute nodes; 24 cores/node —> 133,824 cores; 64 GB RAM/node
Intel Hyper-Threading enabled so you can run with 48 logical cores/node

The Plan of Attack

Phase 1, in which multithreading is completely managed within G4MT:

» Upgrade the g-2 software to Geant4 v10.x - this does not require the use of
multithreading

» Get g-2 code built on NERSC and ALCF machines

= Upgrade g-2 code to incorporate Geant4’s multithreading capabilities

» Make changes to art to incorporate thread safety into events

= Run on test machine (e.g. at Argonne) with 1 thread, 2 threads, 10 threads
» Get g-2MT code built and running on NERSC and ALCF machines

» Test the scaling, figure out the load balancing

= Simulate some large number of events. 10'2 or more muons needed to
reach desired statistical sensitivity. We would like to contribute
significantly to this need.

Geant4MT - Event Level Parallelism

Geant4 10.x in MT mode offers ‘event level parallelism’. Each worker
thread is tasked to simulate one or more events independently, while the
master thread controls the overall initialization and also distributing events
and merging results to/from worker threads.

Master (shared) Create G4MTRunManLger main()
-
Geant4 Kernel MyDetectorConstruction
MyPhysicsList p Create/Set
MyActioninitialization
- /\ .
BuildOnMaster. ~ é 5 N - Initialjze
N , Bul N R
: unBeamOn
MyRunAction Y, N -

Event N+2 ')y EventAction
Event N+3

Delete GAMTRunManager——— 7

The g-2 MT Event Loop

e In MT mode, a single art event consists of some number N of Geant4 events,
which is set by the G4AMTRunManager in main().

e The multithreading is controlled by Geant4. Once the N events are
complete, data accumulation is done in art. The art event is currently not

thread safe.

G4::Event
G4MTRunManager G4::Event
art gives control to starts N threads and _ e
G4 in art::produce makes M events . ° — art::Event
thus creating M G4 events)
o
G4::Event

Geant4MT - Shared versus Thread Local Objects

= In MT mode, objects that are invariant during the event loop are shared
among threads. This helps to reduce the memory footprint.

- Geometry and physics tables

- User initialization classes G4VUserDetectorConstruction,
G4VUserPhysicsList, and newly introduced G4VUserActionlnitialization

= Objects that are transient during the event loop are thread-local. Thread-
local objects are instantiated and initialized at the end of the first
execution of G4RunManager::Initialize().

- Events, tracks, steps, trajectories, hits, etc.

- Several G4 manager classes such as EventManager, TrackingManager,
SteppingManager, TransportationManager, GeometryManager,
FieldManager, Navigator, and SensitiveDetectorManager

— User action classes and sensitive detector classes

Code Modifications Made to Incorporate G4MT

» We have moved user-action instantiation from artg4dMain_module.cc to the

G4UserActionlnitialization class.

artg4Main BEFORE:

art::ServiceHandle<ActionHolderService» actionHolder;
actionHolder->initialize();

// Store the run in the action holder
actionMolder->setCurrArtRun(r);

// Declare the primary generator action to Geant
runManager_->SetUserAction{new ArtG4PrimaryGeneratorAction);

// Note that these actions (and ArtG4PrimaryGeneratorAction above) are all
// generic actions that really don't do much on their own. Rather, to |

// use the power of actions, one must create action objects (derived from
// @ActionBase®) and register them with the Art @ActionHolder@ service.

// See @ActionBase@ and/or @ActionHolderService@ for more information.
runManager_ -> SetUserAction(new ArtG4SteppingAction);

runManager_ -> SetUserAction(new ArtG4StackingAction);

runManager_ -> SetUserAction(new ArtG4EventAction);

runManager_ -> SetUserAction(new ArtG4TrackingAction);

runManager_ -> SetUserAction(new ArtG4RunAction);

runManager_->Initialize();
physicsListiolder->initializePhysicsList();

o\:—

S

artg4Main AFTER:

art::ServiceHandle<ActionHolderService> actionMolder;
actionHolder->initialize();

// Store the run in the action holder
actionHolder->setCurrArtRun(r);

// User action initialization
runManager_->SetUserInitialization(new ArtG4ActionInitialization());

runManager_->Initialize();
physicsListHolder->initializePhysicsList();

10

Code Modifications Made to Incorporate G4MT

» We have moved user-action instantiation from artg4dMain_module.cc to the
G4UserActionlinitialization class.

New ArtG4Actionlnitialization class AFTER:

i/ ArtG4ActionInitialization.cc provides implementation of Art G4's built-in action initialization.

// Author: Lisa Goodenough
// Date: December 2915

// Include header
#include "artgd4/geantInit/ArtG4ActionInitialization.hh™

// Other local includes

#include "artgd/geantInit/ArtG4EventAct ion.hh™

#include "artgd/geantinit/ArtG4PrimaryGeneratorAction.hh"
#include "artgd/geantInit/ArtG4RunAction.hh”

#include "artgd/geantInit/ArtGaStackingAction.hh"
#include "artgd/geantInit/ArtG4aSteppingAction.hh"
#include "artgd/geantInit/ArtG4TrackingAction.hh"

// used for defining only the UserRunAction for the master thread
:oid artgd: :ArtG4ActionInitialization: :BuildForMaster() const

SetUserAction{new ArtG4RunAction);
}

// used for defining user action classes for worker threads as well as for the sequential mode.
vold artgd::ArtG4ActionInitialization: :Build() const
{

SetUserAction(new ArtG4EventAction);
SetUserAction(new ArtG4PrimaryGeneratorAction);
SetUserAction(new ArtGdRunAction);
SetUserAction(new ArtGdStackingAction);
SetUserAction(new ArtG4SteppingAction);
SetUserAction(new ArtG4TrackingAction);

4‘!:'.i!!::l:lllllllllzs:::::? B

Code Modifications Made to Incorporate G4MT

= We use G4AMTRunManager exclusively in main(). For sequential mode, we
use runManager_ —> SetNumberOfThreads(1).

// At begin job

void artg4::artg4Main::beginJob()

{
// Set up the run manager and the number of threads
mf: :LogDebug("Main_Run_Manager") << "In begin job";
runManager_.reset{ new ArtG4MTRunManager);

// if this is not set, then the default is 2
runManager_->SetNumberOfThreads(1);

= We also determine the number of G4 event per art event.

// Begin the art event, making "MTevents" G4events per art event

G4int MTevents = 1;
runManager_ -> BeamOnDoOneMTEvent(e.id().event(),MTevents);

12

..
Code Modifications Made to Incorporate G4MT

= We have split detector construction, putting sensitive detectors and fields, thread local
quantities, in the new ConstructSDandField method. Shared quantities such as definitions
of materials, volumes, etc. are left in the Construct method.

GAVPhysicalVolume « artgd::ArtGaDetectorConstruction::Construct() ({iAVPhysicaWolune « artgd::ArtG4DetectorConstruction: :Construct()
return world_; return world_;

void artgd::ArtGaDetectorConstruction: : findSD(GAVPhysicalVolumes physicalV){

GdLogicalVolumex logicalV = physicalv->GetLogicalVolume();
Gdint numdaughterlVs = logicalv->GetNoDaughters();

if (numdaughterlVs == @){
retum;
for (G4int i=9; i < numdaughterlVs; ++i) {

G4VPhysicalVolumes daughterPV = logicalV->GetDaughter(i);
GdlogicalVolume= daughterLV = daughterPVv->GetLogicalVolume();

GavSensitiveDetector= SD = daughterLV->GetMasterSensitiveDetector();
if (S0 1= 9) {
SetSensitiveDetector(daughterlLV,SD);

findSD(daughterPV);
}
}0 10 artgd::ArtG4DetectorConstruction: :ConstructSDandField()

findSD(world_);

Code Modifications Made to Incorporate G4MT

= We have transformed G4Allocator to G4ThreadLocal G4Allocator for hit and
trajectory classes.

BEFORE: AFTER:

typedef G4THitsCollection<CaloHit> CaloHitsCollection; typedef G4THitsCollection<CaloHit> CaloHitsCollection;

extern G4Allocator<CaloHit> CaloHitAllocator; extern G4ThreadlLocal G4Allocator<CaloHit>x CaloHitAllocator
} // namespace gm2ringsim } // namespace gm2ringsim
inlxne void= gm2ringsim::CaloHit::operator new(size_t) inline void* gm2ringsim::CaloHit::operator new(size_t)

void =aHit;
aHit = (void %) CaloHitAllocator.MallocSingle();
return aHit;
} }
return (void *) CaloHitAllocator->MallocSingle();

if(!CaloHitAllocator){
CaloHitAllocator = new G4Allocator<CaloHit>;
G4AutoDelete: :Register(CaloHitAllocator); //Uses

Additional Modifications One May Need/Can Make

» |f data is accumulated in the RunAction classes, then G4Run’s ‘Merge’
method would need to be implemented. Our data accumulation is all done
within the art event using the art framework. So, we don’t need to worry
about G4Run’s ‘Merge’ method at this time.

= Custom thread behavior is available using G4UserThreadInitialization. This
could be useful/interesting down the road.

- Change the way events are assigned to threads, e.g. from the default
run-robin to a queue-based model

— Add user-specific initialization code in thread initialization/termination
functions

— Completely replace the threading mode (by default based on pthreads)
to allow custom threading frameworks

15

The Plan of Attack

Phase 1, in which multithreading is completely managed within G4MT:

X =

Upgrade the g-2 software to Geant4 v10.x - this does not require the use of
multithreading

Get g-2 code built on NERSC and ALCF machines

Upgrade g-2 code to incorporate Geant4’s multithreading capabilities
Make changes to art to incorporate thread safety into events

Run on test machine (e.g. at Argonne) with 1 thread, 2 threads, 10 threads
Get g-2MT code built and running on NERSC and ALCF machines

Test the scaling, figure out the load balancing

Simulate some large number of events. 10'2 or more muons needed to
reach desired statistical sensitivity. We would like to contribute
significantly to this need.

16

The Future

e In Phase 1, the multithreading is completely managed within the G4 event
loop.

« We would like to move into a Phase 2 in which a project called ‘multi-
schedule’ art is utilized.

e In multi-schedule art, the thread scheduling is managed by Intel Thread
Building Blocks (TBB). The event coordination and workflow is managed by
the art Scheduler.

 In this way, multiple events could be active at the same time across each
thread.

17

