protoDUNE-SP Photon Detector System

Leon Mualem Caltech August 2, 2016 Photon Detector Review University of Chicago

Leon Mualem August 2, 2016

1

protoDUNE-SP Photon Detector System

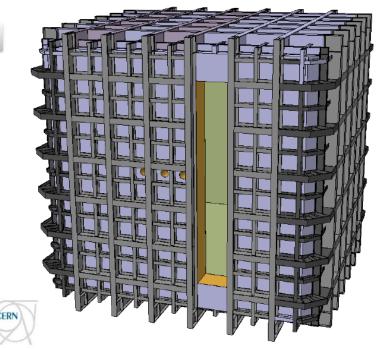
- protoDUNE-SP
- protoDUNE-SP Photon Detector System
- protoDUNE-SP Photon Detector Goals
- Photon Detector System Requirements
- Risk
- Lessons Learned
- Schedule
- Conclusions

2

ProtoDUNE SP at CERN:

DEEP UNDERGROUND NEUTRINO EXPERIMENT

protoDUNE-SP


- Membrane Cryostat, approximately cube with 10m sides
- Approximately 6m cube TPC inside
- 3 beam ports
- electron,π,μ beams
- Particle ID, momentum (0.2-7GeV) and timing signals from beamline instrumentation
- DUNE Cryostat will be 2x taller, 2x wider, and 6x deeper
- DUNE beam event timing will be determined by Main Injector spill time of 10µs

ProtoDUNE SP

the ProtoDUNE cryostat at the Neutrino-Platform - update

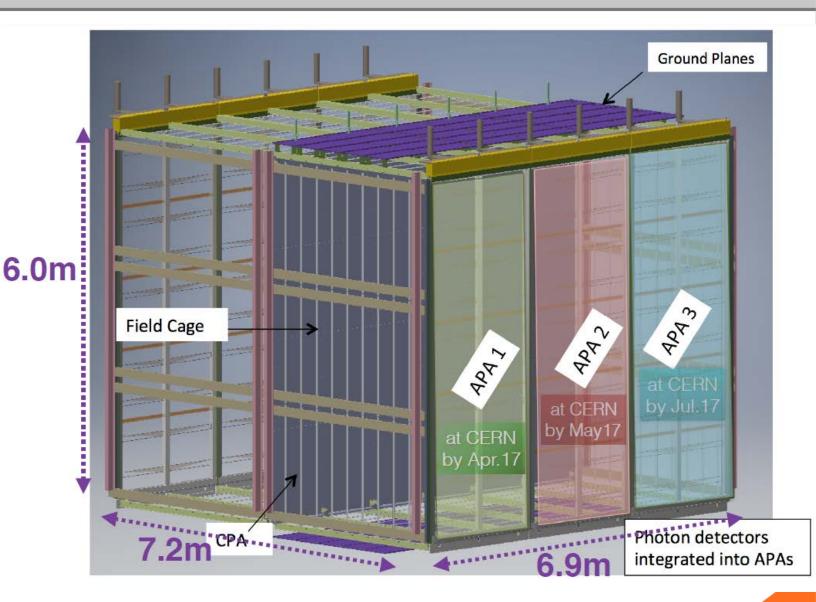
Cryostat construction: major contribution by CERN

- outer structure delivery expected in summer 2016
- membrane + insulation installation should start in Oct. 16
- Goal: cryostat ready by Mar. 2017

TEMPORARY CONSTRUCTION OPENING

Caltech

Jun. 12-2016 F. Cavanna, LBNC Mtg I ProtoDUNE SP



protoDUNE-SP TPC

- The TPC consists of 6 anode plane assemblies (APAs) with integrated photon detectors, 3 cathode plane assemblies (CPAs)
- It is roughly 6m tall, 7m deep, and 7.2m wide
- DUNE TPC
- 2x wider, 3 APAs and 2 CPAs
- 2x taller, planes will hang from upper neighbor
- 25 planes deep in beam direction
- 150 APA planes

DUNE

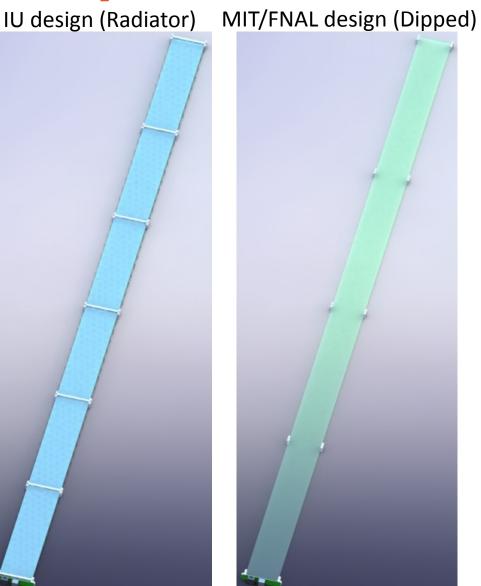
• 1500 photon detector modules

Leon Mualem August 2, 2016

4

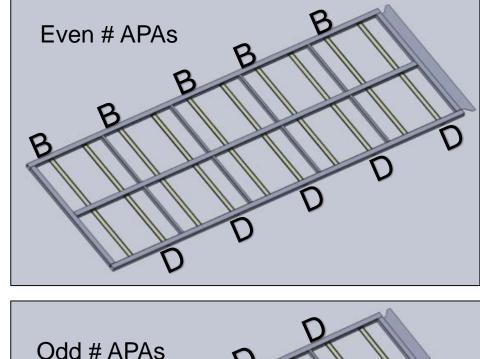
Photon Detector System

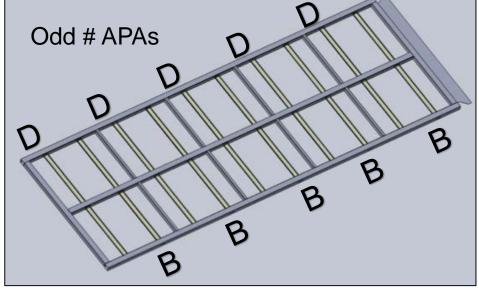
- 10 bars/paddles in each APA
 - 2 types, plus 2 R&D paddles
 - Radiator/WLS Bar (IU)
 - Dip-coated bars (MIT and FNAL)
 - ARAPUCA Arrays (UNICAMP)
- Array of 12 SiPMs per paddle
 - CSU, NIU, Caltech
- 6 APAs
 - 60 paddles
 - 720 SiPMs
- Bias and digitization provided by SiPM Signal Processor (SSP) (ANL)
- 240 readout channels
- External Calibration Flasher with emitters on Cathode Plane (ANL)
- MANY more details in next 12 talks


10 PDs per APA Frame PD area 2094mm X 84mm (each) APA Frame area (Outside) 6060mm X 2300mm PD Coverage fraction: ~12.6%

Modular PD Concept

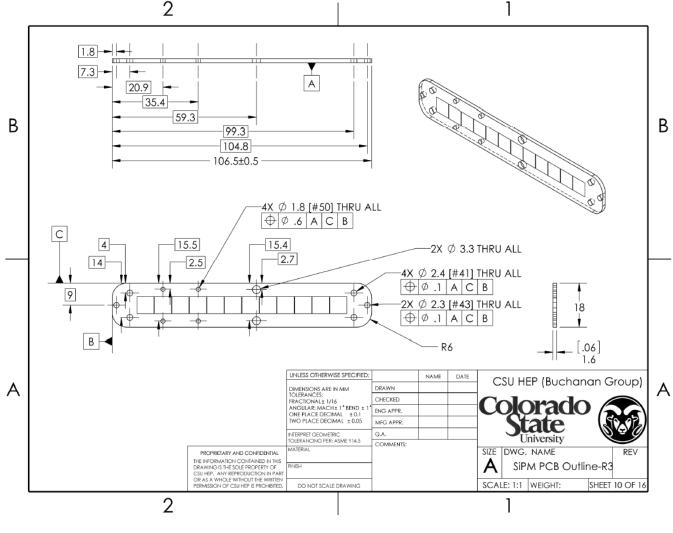
- Module dimensions:
 - 2108mm long X 107mm wide X 18 mm thick (outside)
 - 2086mm long X 95mm wide X 14.5mm thick (Inside APA)
 - PD Dimensions driven by available installation slot in the APA (108mm long X 19mm tall)
- Modules masses:
 - IU design: 2.03 kg
 - MIT/FNAL design: 1.34 kg
- Modular design and post-APA assembly installation allows for testing of different PD design concepts
- Two principle designs: IU design with radiator plates, MIT/FNAL design with TPB-dipped light guide bar





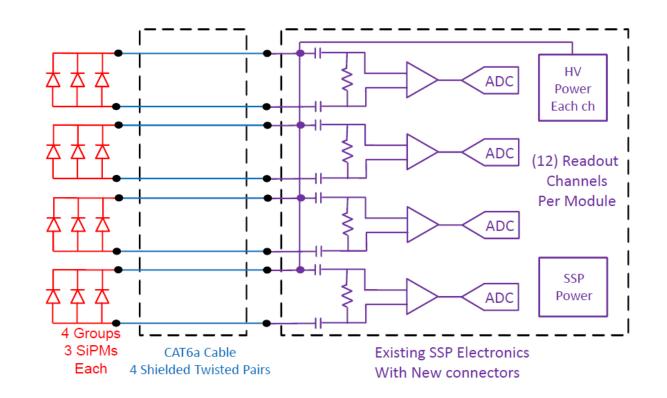
6

Photon Detector Deployment Plan


- 2 types of bars planned Baseline
 (B) and Dipped (D)
- 6 APAs total
- Deploy alternating B and D style paddles to make exposure more uniform
- Alternate starting type on each APA
 - APA 1, 3, and 5 will be the same
 - APA 2, 4, and 6 will be the same
 - Later APAs could have some swapped for R&D designs, as planned for the ARAPUCA arrays

SiPM Mount PCB

12 SiPMs, 0.2mm separation SMT RJ-45 connector



Baseline SiPM Readout Design

- Use adaptation of Argonne National Lab SSP design used at test locations and 35T
- Compatible and tested with DAQ already
- Tested with 3 passively ganged SiPMs and proposed readout cables
- See Gary Drake Talk for design, specs and pictures

SiPM Ganging Scenarios

• **Baseline Design:** Gang 3 SiPMs together passively on the SiPM board

protoDUNE-SP Photon Detector

Goals

- Demonstrate Light Detection Capability
 - Determine Detection Sensitivity
 - Measure Background Rates
- Measure detector response to known particles for a reasonable number of production modules
- Confirm modeling and simulations
- Demonstrate interfaces have been addressed
 - Mechanical interfaces
 - Photon Detector System Anode Plane Assembly
 - Calibration system to Cathode Plane
 - Cryostat feedthroughs
 - Electrical interfaces
 - Grounding and shielding
 - Power Distribution
 - DAQ interfaces
 - Readout
 - Triggering
 - Data rates
 - Timing

protoDUNE-SP Photon Detector

Requirements

DUNE Requirements

- Requirements for DUNE Science:
 - Proton Decay
 - Atmospheric Neutrino
 - Supernova Neutrino
- Resulting Photon Detector Requirements
 - Parameter 0.1pe/MeV (at cathode plane)
 - 1 microsecond for position resolution
- Future Photon Detector Requirements
 - Committee to address possible updates to science and resulting PD requirements
 - protoDUNE measurements will inform possibility of extending the science and detector requirements

Global Objectives

Global objectives from requirements document dunedoc-112 define the high level measurements and drive Global science requirements

ID	Object Heading	g Object Text	Rationale	Parent	Verification method
Glo-obj-4	Proton Decay	A search for proton decay in the far detector, yielding a significant improvement in current limits on the partial lifetime of the proton (τ /BR) in one or more important candidate decay modes, e.g. $p \rightarrow K^+ v$ or $p \rightarrow e^+ \pi^0$	As an additional note: measurements in the near detector with a neutrino beam could serve to understand backgrounds to the proton decay search.		data analysis
Glo-obj-5	Neutrino Flux from a Core Collapse Supernova	Detection and measurement of the neutrino flux from a core collapse supernova within our galaxy, should one occur during the lifetime of DUNE			data analysis
Glo-obj-6	Ancillary Science Program				
Glo-obj-8	Neutrino Oscillation Using Atmospheric Neutrinos	Measurements of neutrino oscillation gphenomena using atmospheric neutrinos			data analysis
Glo-obj-13	Additional Scientific Objectives				
Glo-obj-14	Diffuse Supernova Neutrino Flux	Detection and measurement of the diffuse supernova neutrino flux			data analysis

Global Science Requirements

Global science requirements follow from global objectives, and result in performance requirements for the detectors

A few examples shown, many more in dune-doc-112

ID	Туре	Object Heading	Object Text	Rationale	Parent
Glo-Sci-44	heading	LBNF/DUNE Components			
Glo-Sci-8	requirement	Charged current interactions on Ar40 due to supernova burst.	Far detector shall be capable of collecting low energy (<100 MeV) charged current electron neutrino interactions on Ar40 nucleus that arrive in a short period of time (<100 sec) . The final state electron shall be detected and its energy measured.	Most of the events from a supernova neutrino burst are expected to be neutrino absorption on Ar40 producing electrons in the range of 5 to 100 MeV and arrive in less than one minute timeframe. In such events an electron and a K40 nucleus is in the final state. The total event count from a galactic supernova (10 kpc) is expected to be approximately 3,000 events for 40 kt of LAr.	
Glo-Sci-9	requirement	Far Detector Availability	Far detector shall have high uptime with little event by event dead time to allow the capture of low probability astrophysical events that could occur at any time with no external trigger. (>90%)	few times per century within the Milky Way	<u>Glo-obj-5</u>
Glo-Sci-27	requirement	Proton Decay sensitivity	The far-detector fiducial size multiplied by the duration of operation [expressed in kiloton-years] and the rejection of background events shall be sufficient to yield a scientifically competitive result on proton decay.	The result on the kaon-neutrino channel needs to be competitive to running experiments such as Super Kamiokande.	<u>Glo-obj-4</u>
Glo-Sci-33	requirement	Timely trigger regarding Astrophysical Events	The DUNE detector systems shall be configured to provide information to other observatories on possible astrophysical events (such as a galactic supernova) in a short enough time to allow global coordination.	To obtain maximum scientific value out of a singular astronomical event, it is very important to inform all other observatories (including optical ones) immediately, so that they can begin observation of the evolution of the event.	<u>Glo-obj-5</u>
Glo-Sci-34	requirement	Time Accuracy	Individual event times shall be measured with sufficient time accuracy to allow correlation of event times between detectors that are geographically separated.	This requirement will allow time correlations of events between various detectors across the world. This could include correlation between the DUNE near and far detectors.	<u>Glo-obj-5</u>

Far Detector Requirements

Requirements flow down from global objectives to global science requirements and finally to lower level performance requirements

LArFD-L2-se-25	heading	Photon Detection	This is the high level for PD			Parent
LArFD-L2-se-26	design choice	Detect Scintillation light	A photon detector shall be implemented and integrated into the TPC modular design to detect the time and intensity of scintillation light from ionizing radiation in the active portion of the liquid argon detector.	detector into the current TPC design. This		<u>larfd-12-se-82</u> larfd-12-se-83
LArFD-L2-se-27	design choice	Photon Detector using light guides	The photon detector shall consist of light guides suitably coated and doped to shift liquid argon scintillation photons of 128 nm and transport them into solid state detectors mounted on the light guides			<u>larfd-12-se-96</u>
LArFD-L2-se-28	requirement		The photon system shall detect sufficient light from events depositing visible	atmospheric neutrinos. The time measurement is needed for vertex determination as specified in the parent.	If proton decay vertex in the fiducial cannot be determined well, then the sensitivity will be affected by backgrounds from cosmic ray muons.	larfd-12-se-82
LArFD-L2-se-29	requirement	System	The photon system shall detect sufficient light from events depositing visible lenergy <200 MeV to provide a time measurement. The efficiency of this meansurement shall be adequate for supernova burst events.	measurement of vertex for supernova	significantly from visible energy of 5 MeV to 100 MeV.	larfd-12-se-83
LArFD-L2-se-30	requirement	tphoton system materials	The PD system shall use only materials compatible with high purity liquid argon and minimal natural radioactivity.			<u>larfd-l2-se-7</u> glo-sci-8
LArFD-L2-se-31	requirement	Photon system readout electronics	The photon system readout electronics shall record waveforms continuously with sufficient precision and range to achieve the key physics parameters	to be adjusted so that a few photo- electron signal can be detected with low	The current design readout will output time and pulse height continuously. Need to be able to synchonize with the TPC.	<u>glo-sci-8</u>

Far Detector Requirements

Requirements flow down from global objectives to global science requirements and finally to lower level performance requirements

	LArFD-L2-se-81	heading	Time measurements				
y	LArFD-L2-se-82	requirement	Event timing for high energy events	Event time shall be measured with high efficiency to allow the measurement of the drift coordinate with sufficient precision for events with visible energy above 200 MeV.	Time is needed for Proton decay and atmospheric neutrino event fiducialization and energy resolution. The minimum visible energy for a P to K+ neutrino decay is ~200 MeV including fermi motion effects. sufficient safety margin in terms of threshold needs to be discussed.	These are requirements for the photon detector	<u>glo-sci-27</u>
	LArFD-L2-se-24	requirement	Timing Accuracy, beam events	The detector shall measure the absolute time of occurrence of events with accuracy sufficient to correlate with beam spill for beamline events	the simulation of cosmic ray backgrounds indicate that timing of cosmic ray events with respect to beam spill is critical for background suppression.		glo-sci-20
	LArFD-L2-se-83	requirement	Event timing for low energy events.	Event time for events with visible energy <200 MeV shall be measured with high efficiency and sufficient precision to correct for drift time and improve energy resolution.		These are requirements for the photon detector	<u>glo-sci-8</u>
	LArFD-L2-se-84	requirement	Absolute event timing	Absolute event time shall be measured with sufficient accuracy to allow global analysis of supernova neutrino wave front.	Needed for SN global inter-experiment absolute time measurement. Since the wavefront should take ~30 ms to cross the planet, an accuracy of <2 ms should be sufficient.	These are requirements for the photon detector	<u>glo-sci-34</u>

Far Detector Parameter

Performance requirements finally give the detector parameters at the lowest level that fulfill the requirements of the higher level objectives all the way back to the global objectives. These are also found in dune-doc-112

Item	Value	Unit	Comment	Associated requirement		
Physics						
Measurments						
					These are	glo-sci-27
Minimum Goal					requirements for	
Proton Decay to					the photon	
K+ and neutrino		years	Set limit at 90%	glo-obj-4	detector	
Goal for Proton			set limit with the full scope			glo-sci-20
decay to K+ and			detector and livetime of 10			
neutrino	>3 10^35	years	yrs	glo-obj-4		
	0 10 00	jearo	,		These are	glo-sci-8
Mass hierarchy					requirements for	<u> </u>
, resolution with			using independent		the photon	
Atmospheric			techniques from beam		detector	
neutrinos	> 3	sigma	neutrinos	glo-obj-8		
					These are	<u>glo-sci-34</u>
			Yield from galactic event will		requirements for	
Detection of		events/10 sec	depend on distance, energy		the photon	
supernova	>1000	burst	threshold, detector size.	glo-obj-5	detector	
Photon yield	0.1			Larfd-L2-se-28 => Ability to trigger @		
minimum	0.1	PE/MeV		88 % eff. at 200 MeV visible energy		
Dhatan tima				larfd-L2-se-28=> larfd-L2-se-82 =>		
Photon time resolution	1	Micro-sec		Proton decay larfd-L2-se-29=> larfd-		
				L2-se-83 => SN resolu		

Project Risks

Risk Type	RHD	Title	Probability	 Cost Impact	Schedule Impact	Risk Rank
Threat	RT-131-FD-073	Photon Detector light yield is too low	30 %	2500 k\$	3 6 9 months	2 (Medium)
Threat	RT-131-FD-089	Photon detector SiPMs are not qualified for cryogenic use	15 %	1000 k\$	2 4 6 months	2 (Medium)
Threat	RT-131-FD-098	ProtoDUNE-SP: Degraded Photon Detectors	5 %	k\$	months	0 (Negligible)
Threat	RT-131-FD-117	ProtoDUNE-SP: Photon Detector monitoring software is unavailable for commissioning	15 %	k\$	months	0 (Negligible)

Schedule Risk – protoDUNE-SP schedule end date is driven by Long Shutdown at CERN

Mitigation: Advance purchases – light guide bars and acrylic base

Risk FD-073 Photon light yield too low

Far detector Risk, mitigate by showing sufficient light yield in the prototype – protoDUNE-SP, mitigate by enhancement to light collection efficiency, double-ended readout, mirroring bars, increasing light yield, cathode plane radiator, xenon doping, more detectors

Risk FD-089 Photon detector SiPMs are not qualified for cryogenic use

Far detector Risk, mitigate by testing – see talk, mitigate by allowing flexibility of design to swap photon detector, not only one to make 6mm SiPM, mitigate by making a large prototype detector – protoDUNE-SP

Risk FD-098 ProtoDUNE-SP Degraded Photon Detectors

Prototype detector risk, mitigate by handling controls – shielded lighting during construction and installation specified already, protect during shipping and handling

Risk FD-117 ProtoDUNE-SP Photon Detector monitoring software is unavailable for commissioning

Mitigations: applying from lessons-learned from 35T detector, utilize software developed there, much longer assembly period for this prototype detector to enable testing and commissioning.

Lessons Learned DUNE-DOC-913

- Pre-learned
 - Don't freeze technology before needed
 - Install photon detectors after APA has been wound to maximize flexibility
- Operating conditions (gain and threshold) were not defined for PD modules
 - Perform and record (electronically) QA test data for use at detector
 - All components will have ID for setting operating parameters
- Software not available
 - Define tests ahead of time
 - 3 months of integration testing before install in cryostat longer than entire 35T run
- Data Rates too high
 - Utilize coincidence triggering and digest data (vs. waveform) for self-triggering

ES&H Awareness

Production sites have been internally (local university or national lab) and externally (Fermilab) reviewed for procedures and setup

- Indiana University (WLS bar testing/Plate production)
 - Procedures and processes reviewed by ES&H personnel to determine requirements for new lab space
- Fermilab (Dip-coated production)
 - Setting up new lab space and procedures and getting personnel assigned requires Technical Scope of Work (TSW) where all these requirements are defined and reviewed to assure procedures, facilities and personnel meet needs
- CSU
 - Reviewed by University and Fermilab when setting up Cryogenic Detector Test Facility at CSU
- NIU
 - Reviewed by University in the course of setting up for cryogenic testing of SiPMs and cables
- Caltech
 - Space and procedures were reviewed by department safety officer, and university undergrad safety office. Trained by university personnel on hazards of liquid nitrogen use.

Schedule Key Dates

- Integrated resources loaded schedule has been produced
- Monthly Status reports on each task
- Key links to other protoDUNE-SP subproject activities are included
- Milestones updated and tracked

- First Detector Modules to CSU

 May 2017
- First tested SiPM modules to CSU
 - March 2017
- First Modules to CERN

 May 2017
- Last Modules to CSU
 - July 2017
- Last Modules to CERN
 - Oct 2017
- Cryostat TCO Closed
 Feb 2018
- Commissioning at CERN
 - May 2018
- End of Beam Operations
 - November 2018

Schedule

- Integrated resources loaded schedule has been produced
- Monthly Status reports on each task
- Key links to other protoDUNE-SP subproject activities are included
- Milestones updated and tracked

D		Activity Name		art	Finish	Predecessors			2016			20	017			2	018	
			Duration				Q4	Q1 (12 Q		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q
	13122.05.01.05.365	Prepare for technology selection (Wave guide/radiator cryogenic)CSU	10 31	1-Aug-16	14-Sep-16	13122.05.01.05.315		31-4	lug-16 =	14-Sep-1	5							
	13122.05.01.05.410	Prepare for pre-production review (Wave guide/radiator cryogenic)CSU	40 15	5-Sep-16	09-Nov-16	13122.05.01.05.365, 13122.05.01.05.370MS		15	Sep-16	09-	Nov-16							
	Proto-DUNE Design, En	gineering and Integration	280 0' A		09-Nov-16													
	13122.05.01.05.140	Initial PD/APA integration/cabling design (CSU)	132 0' A	1-Oct-15	12-Apr-16 A	13122.01.02.100MS		1	2-Apr-16 A									
	13122.05.01.05.175	Preliminary PD/APA full-scale installation test (CSU)	60 0° A	1-Feb-16	22-Apr-16 A	13122.02.07.01.145	01-Feb-16 A		22-Apr-16	A								
	13122.05.01.05.240	Proto-DUNE PD/APA integration/cabling design (CSU)	43 0 A	1-Mar-16	28-Apr-16 A	13122.01.02.100MS	01-Mar-1	6 A	28-Apr-16	A								
	13122.05.01.05.220	Fabricate PD Support Rail Components for APA	42 13 A	3-Apr-16	10-Jun-16 A	13122.05.01.05.140	13-	Apr-16 A 💻	10-J u	in-16 A								
	13122.05.01.05.270	Prepare final PD/APA integration/cabling report (CSU)	39 02 A	2-May-16	20-Jul-16	13122.05.01.05.240	02	-May-16 A 🖣	2	20-Jul-16								
	13122.05.01.05.260	Ship PD Support Rail Components to PSL (CSU)	5 13 A	3-Jun-16	17-Jun-16 A	13122.05.01.05.220		13-Jun-16 A	l 17-J	un-16 A								
	13122.05.01.05.320	Prepare for technology selection (PD/APA integration/cabling)	10 21 A	7-Jun-16	20-Jul-16	13122.05.01.05.270		27-Jun-16	A 🗖 2	10-Jul-16								
	13122.05.01.05.415	Prepare for pre-production review (PD/APA integration/cabling)	40 15	5-Sep-16	09-Nov-16	13122.05.01.05.320, 13122.05.01.05.370MS		15	Sep-16	09-	Nov-16							
h	Proto-DUNE Calibration	5 57	40 15	5-Sep-16	09-Nov-16													
	13122.05.01.05.420	Prepare for pre-production review (Calibration)	40 15	5-Sep-16	09-Nov-16	13122.05.01.05.320, 13122.05.01.05.370MS		15	Sep-16	09-	Nov-16							
	Proto-DUNE Dip Coated	Bar	279 0' A	1-Jun-16	11-Jul-17													
Γ	13122.05.01.05.690	Purchase Acrylic Sheets (FNAL)	20 0' A	1 -Jun- 16	22-Jul-16	13122.01.02.101MS		01-Jun-16 A	= 2	2 -Jul -16								
	13122.05.01.05.695	Process Acrylic Sheets to Strips (FNAL)	32 25	5- Jul -16	07-Sep-16	13122.05.01.05.690		25-Jul-	16 🖵	07-Sep-16								
	13122.05.01.05.700	Purchase Dipping Materials (FNAL)	20 25	5- Jul-16	19-Aug-16	13122.05.01.05.690		25-Jul-	16 🖵	19-Aug-16								
	13122.05.01.05.705	Extend Annealing Setup (FNAL)	40 08	8-Sep-16	02-Nov-16	13122.05.01.05.700, 13122.05.01.05.695,		08-S	ep-16 —	02-1	ov-16							
	13122.05.01.05.710	Design 2.2m Dipping vessel (FNAL)	40 22	2-Sep-16	16-Nov-16	13122.05.01.05.705		22-	Sep-16	16	Nov-16							
	13122.05.01.05.715	Purchase parts for Dipping vessel (FNAL)	20 17	7-Nov-16	16-Dec-16	13122.05.01.05.710			17-Nov	-16 💻 🗖	16-Dec-16	6						
	13122.05.01.05.720	Assemble Dipping Vessel (FNAL)	20 19	9-Dec-16	20-Jan-17	13122.05.01.05.715			19-C)ec-16 🗕 🗖	20-Jar	n-17						
	13122.05.01.05.725	Dip prototype Acrylic Bars (8) (FNAL)	40 23	3-Jan-17	17-Mar-17	13122.05.01.05.720			:	23-Jan-17 —		17-Mar-1	7					
	13122.05.01.05.730	Dip Production Acrylic Bars (32) (FNAL)	60 20)-Feb-17	12-May-17	13122.05.01.05.725				20-Feb-17		12	May-17					
	13122.05.01.05.735	Dip Acrylic Bars Testing (FNAL)	60 03	3-Apr-17	26-Jun-17	13122.05.01.05.730				03-Apr	17 —		26-Jur	r-17				
							L											
	Remaining Level of Effort	Primary Baseline Remaining Work				Page 4 of 7				TASK filters:	ProtoDUNE	Only, WB	S.					

Schedule II

- Integrated resources loaded schedule has been produced
- Monthly Status reports on each task
- Key links to other protoDUNE-SP subproject activities are included
- Milestones updated and tracked

Far Dete	ctor			Far Detector - Proto	DUNE				14	I-Jul-16 11:28
Activity IE	0	Activity Name	Original Start Finish Duration	Predecessors		2016		2017	2018	2019
	13122.05.01.05.740	Ship Dip Acrylic Bars to CSU (FNAL)	10 27-Jun-17 11-Jul-17	13122.05.01.05.735	Q4	Q1 Q2 Q3	Q4	Q1 Q2 Q3 Q4 27-Jun-17 = 11-Jul-17	Q1 Q2 Q3	Q4 Q1
	Proto-DUNE PD Fabrication	on/Shipping/Installation	238 10-Nov-16 23-Oct-17							
	PD Module Fabrication/Te	esting	183 10-Nov-16 04-Aug-17		-					
	13122.05.01.05.430	PD Module final design revision (CSU)	30 10-Nov-16 27-Dec-16	13122.05.01.05.415, 13122.05.01.05.425MS		10-Nov-1	16	27-Dec-16		
	13122.05.01.05.480	Procure/Fabricate SiPM PCBs (CSU)	59 28-Dec-16 23-Mar-17	13122.05.01.05.430		28	3-Dec-16	23-Mar-17		
	13122.05.01.05.485	Procure SiPMs (Caltech, NIU)	59 28-Dec-16 23-Mar-17	13122.05.01.05.430		28	3-Dec-16	23-Mar-17		
	13122.05.01.05.490	Procure SiPM PCB connectors (CSU)	59 28-Dec-16 23-Mar-17	13122.05.01.05.430		28	B-Dec-16	23-Mar-17		
	13122.05.01.05.495	Procure/test light guide bars (IU)	86 28-Dec-16 01-May-17	13122.05.01.05.430		28	3-Dec-16	01-May-17		
	13122.05.01.05.500	Procure WLS plate blanks (IU)	30 28-Dec-16 10-Feb-17	13122.05.01.05.430		28	3-Dec-16	10-Feb-17		
	13122.05.01.05.505	Fabricate PD module assembly components (CSU)	88 28-Dec-16 03-May-17	13122.05.01.05.430		28	3-Dec-16	03-May-17		
	13122.05.01.05.525	Fabricate(coat)/test WLS plates (IU)	58 13-Feb-17 03-May-17	13122.05.01.05.500			13-Feb-1	03-May-17		
	13122.05.01.05.540	Assemble SiPMs/connectors to PCBs/test (NIU/Caltech)	29 24-Mar-17 03-May-17	13122.05.01.05.490, 13122.05.01.05.485,			24-M	ar-17 🖵 03-May-17		
	13122.05.01.05.560MS	T5 MS - Begin ProtoDUNE PD module assembly	0 03-May-17	13122.05.01.05.505, 13122.05.01.05.540,				🔶 T5 MS - Begin ProtoDU	NE PD module assembly	
	13122.05.01.05.565	Assemble 10 PD modules (1) (CSU)	15 04-May-17 24-May-17	13122.05.01.05.560MS			0	4-May-17 🗕 24-May-17		
	13122.05.01.05.590	Assemble 10 PD modules (2) (CSU)	10 25-May-17 08-Jun-17	13122.05.01.05.565, 13122.05.01.05.570				25-May-17 🗕 08-Jun-17		
	13122.05.01.05.600	Assemble 10 PD modules (3) (CSU)	10 09-Jun-17 22-Jun-17	13122.05.01.05.590				09-Jun-17 🗕 22-Jun-17		
	13122.05.01.05.610	Assemble 10 PD modules (4) (CSU)	10 23-Jun-17 07-Jul-17	13122.05.01.05.600				23-Jun-17 🚽 07-Jul-17		
	13122.05.01.05.620	Assemble 10 PD modules (5) (CSU)	10 10-Jul-17 21-Jul-17	13122.05.01.05.610				10-Jul-17 🗕 21-Jul-17		
	13122.05.01.05.645	Assemble 10 PD modules (6) (CSU)	10 24-Jul-17 04-Aug-17	13122.05.01.05.620				24-Jul-17 🖵 04-Aug-17		
	Test PD modules		183 28-Dec-16 18-Sep-17							
	13122.05.01.05.510	Fabricate test stand (CSU)	60 28-Dec-16 24-Mar-17	13122.05.01.05.430		28	B-Dec-16	24-Mar-17		
	13122.05.01.05.570	Test PD modules (1) (CSU)	15 04-May-17 24-May-17	13122.05.01.05.510, 13122.05.01.05.565			0	4-May-17 🗕 24-May-17		
i i	13122.05.01.05.580MS	T5 MS - ProtoDUNE 10 PD modules ready to ship	0 24-May-17	13122.05.01.05.570				♦ T5 MS - ProtoDUNE	10 PD modules ready to ship	
·	13122.05.01.05.595	Test PD modules (2) (CSU)	15 25-May-17 15-Jun-17	13122.05.01.05.570				25-May-17 🖵 15-Jun-17		
					L				<u> </u>	
_	Remaining Level of Effort Actual Level of Effort	Primary Baseline Remaining Work Actual Work Critical Remaining	Work	Page 5 of 7			TASK filters:	ProtoDUNE Only, WBS.	© Oracle	le Corporation

Schedule III

- Integrated resources loaded schedule has been produced
- Monthly Status reports on each task
- Key links to other protoDUNE-SP subproject activities are included
- Milestones updated and tracked

Far De	tector					Far Detector - Proto	DUNE											1	14-Jul-16	11:28
Activity	ID	Activity Name	Original Duration	Start	Finish	Predecessors			201				2017				2018			2019
	13122.05.01.05.615	Test PD modules (3) (CSU)		23-Jun-17	14-Jul-17	13122.05.01.05.590, 13122.05.01.05.600	Q4	Q1	Q2	Q3	Q4		02 0 7 - 14		Q4	Q1	Q2	Q3	Q4	Q1
	13122.05.01.05.625	Test PD modules (4) (CSU)	15	17-Jul-17	04-Aug-17	13122.05.01.05.610, 13122.05.01.05.615						17-Ju	-17 🖵	04-Aug-	-17					
	13122.05.01.05.650	Test PD modules (5) (CSU)	15	07-Aug-17	25-Aug-17	13122.05.01.05.620, 13122.05.01.05.625						07-4	ug-17 🚽	25-Au	ug-17					
	13122.05.01.05.665	Test PD modules (6) (CSU)	15	28-Aug-17	18-Sep-17	13122.05.01.05.650, 13122.05.01.05.645						28	-Aug-17	- 18-	-Sep-17					
	Proto-DUNE PD Electron	nics/Cabling Fabrication	192	10-Nov-16	17-Aug-17															
	13122.05.01.05.435	Finalize Proto-DunePD Cabling design (ANL)	60	10-Nov-16	10-Feb-17	13122.05.01.05.420, 13122.05.01.05.415, 13122.05.01.05.425MS			10-	-Nov-16		10-Feb	-17							
	13122.05.01.05.440	Finalize Proto-DUNE PD Readout Electronics Design (ANL)	90	10-Nov-16	24-Mar-17	13122.05.01.05.435, 13122.05.01.05.415, 13122.05.01.05.415,			10-	-Nov-16		24	Mar-17							
	13122.05.01.05.445	Fabricate Proto-DUNE PD Calibration System (ANL)	192	10-Nov-16	17-Aug-17	13122.05.01.05.425MS			10-	-Nov-16				17-Au	ig-17					
	13122.05.01.05.515	Procure/Test PD Cables (ANL)	60	13-Feb-17	05-May-17	13122.05.01.05.435				1	3-Feb-17		05-May-1	17						
	13122.05.01.05.530	Procure/Test 16 Modified PD Readout Modules (SSPs) (ANL)	90	27-Mar-17	01-Aug-17	13122.05.01.05.440					27-Mar			01-Aug-	-17					
	13122.05.01.05.535	Modify/Test 8 existing 35t SSPs (ANL	40	27-Mar-17	19-May-17	13122.05.01.05.440					27-Mar	-17	19-May	-17						
		T5 MS - ProtoDUNE PD Cables ready to Ship	0		05-May-17	13122.05.01.05.515						<u>ہ</u>	T5 MS -	ProtoDU	JNE PD	Cables re	ady to Ship			
		T5 MS - ProtoDUNE SSPs ready to ship	0		01-Aug-17	13122.05.01.05.530							۰ •	T5 MS -	- ProtoD	UNE SSF	os ready to	ship		
	Ship Proto-DUNE PD sys	stem to CERN	118	08-May-17	23-Oct-17															
	13122.05.01.05.555	Ship Proto-Dune Cables to CERN (ANL)	15	08-May-17	26-May-17	13122.05.01.05.550MS						May-17 💻								
	13122.05.01.05.575	Ship 8 PD Electronics to CERN (ANL)	10	22-May-17	05-Jun-17	13122.05.01.05.535					2	2-May-17 =								
	13122.05.01.05.585	Ship 10 Proto-DUNE PD Modules to CERN (1) (CSU)	10	25-May-17	' 08-Jun-17	13122.05.01.05.580MS						25-May-17		n-17						
	13122.05.01.05.605	Ship 10 Proto-DUNE PD Modules to CERN (2) (CSU)			29-Jun-17	13122.05.01.05.595						16-Jun-17		Jun-17						
	13122.05.01.05.630	Ship 10 Proto-DUNE PD Modules to CERN (3) (CSU)			28-Jul-17	13122.05.01.05.615							-17 = 17							
	13122.05.01.05.640	Ship Proto-DUNE PD Electronics to CERN (ANL)		-	22-Aug-17	13122.05.01.05.635MS)-17 — —		-					
	13122.05.01.05.655	Ship 10 Proto-DUNE PD Modules to CERN (4) (CSU)		-	18-Aug-17	13122.05.01.05.625							ug-17 🗕		-					
	13122.05.01.05.660	Ship Proto-DUNE calibration system to CERN (ANL)	15	18-Aug-17	08-Sep-17	13122.05.01.05.445						18-A	ug-17 🗕	08-5	Sep-17					
	13122.05.01.05.685	Commission PD system at CERN (CSU +?)	40	28-Aug-17	23-Oct-17	13122.05.01.05.680MS, 13122.05.01.05.740										-17				
	13122.05.01.05.670	Ship 10 Proto-DUNE PD Modules to CERN (5) (CSU)	10	28-Aug-17	11-Sep-17	13122.05.01.05.650						28	-Aug-17	- 11-S	Sep-17					
							-	•							- 1					
	Remaining Level of Effort	Primary Baseline Remaining Work				Page 6 of 7				ľ	ASK filters:	ProtoDUNE On	y, WBS.							
	Actual Level of Effort	Actual Work Critical Remaining	work															© Orac	cle Corpo	ration

Conclusions

- Photon Detector System has been designed to meet the requirements of DUNE
- protoDUNE-SP will allow evaluation of the performance relative to the requirements
- An integrated resource loaded schedule has been completed that meets the timeline of protoDUNE
- The design builds on the lessons learned in 35T and other prototypes
- Schedule and technical risks have been addressed for protoDUNE, and protoDUNE is a risk mitigation strategy for DUNE
- The following talks will take you through the details of the protoDUNE Photon Detector System (PDS) design

Charge Matrix

Charge Iten	n Charge Question	Mualem	Himmel	Whittington	Mufson	Toups	Segreto	Zutshi	Mufson(2)	Warner	Warner(2)	Drake	Djurcic	Buchanan
1	Does the Photon Detector System design enable validation and refinement of the DUNE photon detector requirements?	Х	Х	Х			Х							
2	Are Photon Detector System risks captured and is there a plan for managing and mitigating these risks?	Х			Х	Х	Х		х			Х		
3	Does the design lead to a reasonable production schedule, including QA, transport, installation and commissioning?	Х			Х	Х	Х	Х		х	Х	Х	х	
4	Does the documentation of the Photon Detector System technical design provide sufficiently comprehensive analysis and justification for the Photon Detector System design adopted?	Х	Х	Х	Х	Х	Х	Х	х	х	Х	Х	х	Х
5	Is the Photon Detector system scope well defined and complete? Are all Photon Detector System interfaces to other detector components: APA, cryostat and DAQ systems documented, clearly identified and complete? Do the electronics feedthrough port and TPC integrated 3D models adequately represent the mechanical, electrical and electronic interfaces to the Photon Detector System? Is the cabling, power and calibration well defined and understood? Is the grounding and shielding understood and adequate?	х						х		х	х	x	х	
6	Are the Photon Detector System 3D model(s), top level assembly drawings, detail/part drawings and material and process specifications sufficiently complete to demonstrate that the design can be constructed and installed?				х	Х	х	Х		х	Х			
7	Are operation conditions listed, understood and comprehensive? Is there an adequate calibration plan?	Х						Х		Х	Х	Х	Х	
8	Are the Photon Detector System engineering analyses sufficiently comprehensive for safe handling, installation and operation at the CERN Neutrino Platform? Is the installation plan sufficiently well developed? Is the design for installation tooling adequate for installing the photon system?										Х			
9	Have applicable lessons-learned from previous LArTPC devices been documented and implemented into the QA plan? Are the Photon Detector System quality control test plans and inspection regimes sufficiently comprehensive to assure efficient commissioning and adequate operational performance of the NP04 experiment?	х												х

