

3.9 GHz components design

- 3.9 GHz system functionality
- Requirements
- Cavity design modification
- HOM design
- Coupler design
- Heating issues
- Frequency Tuner
- BPM; Gate-valve; HOM absorber.
- Conclusion

FLASH and XFEL - ACC39 performance

SLAC

ACC39 routinely operates at 18.9 to 19.7 MV/m

 \circ Capable of operation at 22 MV/m

- Limitation set by thermal interlocks – concern about compromising HOM's on cavities 3 & 5 (trimmed 2-post style)

- Amplitude stability ≤ 2x10⁻⁵ pulse-to-pulse
- Phase stability ≤ 0.003° pulse-to-pulse

			S	ASE Tunin	g			Tuning	paran>log
Energy 697.63	Pyro Feedback Pyro 9DBC2.1 0n/0	off 🗹 📫 3800 📕	Alive?	eedback 4DBC3.2 On/Off 📝	÷,0.1000 III	Alive? Energ	y On/Off ack	÷;;;;;	Alive?
Vavelength 13.14 nn	BAMFeedback On/O 30BC2 1.933	off 🔲 🕂 13.89 📕	Alive? BAMFeed 18ACC7	lback 0.442 On/Off	- 7.23 H	Alive?	GMD-T OK Ener	gy (TUNNEL)	
0.03 % RMS		9DBC2 pyro fine -	0.378 4DBC3 pyro	fine -0.601	7ECOL p	yro ¥	CHD-T ok 87	.9 µJ	Toroid
Injector settings	Laser 2		0.7807 70deg	<u>cearse</u> -0.106	Fyro -	0.272	CHD-B off 10 nn	/ 10 nn	0.26 nC
Charge 0.29 nC									IR und orbit FS
Iris 35.93 nn	KLY3 KLY2			KLY5 KLY4					
Bunches + 5	Main&F-ok	Hannskr	-ok No	MainSke-ok		LOLA (PFN)	off		
1000 kHz	Orbit INJ	DBC2	ACC283 BC3	ACC4-7	Dogleg	ORS	LASH Und. orbi	DUMP	
block laser	GUN	4001	— ACC39—	- ACC2/3 -	- ACC4/5 -	ACC6/7	Steerers ins	ide undulator	All pyros
Main Solenoid	SP + 3.94	D . + 161.0 .	+ 18.9 H	+ 330.2 🔳	+ 227.7 1	÷0.1 🛙	H7SMATCH_	H12SMATCH	FEL -
-315.3 A	old 3.940	Y 161.0 MV	18.80	330.20	231.21	0.10	- 1.330	- 2.210	ESH9 open
-315.3	RB 3.97 1	161.0 MV	18.9 MV	325.8 MV	229.1 MV	1.5 HV	-1.280	-2.190	FBD
-313.3 h	Phase -9.6	D 0.01	- 26.10 🔳	+ 19.76	+ 1.70 🔳	- 0.00 🖩	-1.329 A	-2.211 A	-Alignment-
Bucking Coil	old -9.20 d	q -0.3 deg	-26.27 deg	21.65 deg	1.70 deg	-0.00 deg	V7SMATCH	V12SMATCH	1
+,16.0 A	RB -150.7	eg 7.26 deg	-26.1 deg	19.6 deg	18.6 deg	-168.3 deg	- 0.610	+ 2.280	
16.0 16.0 A	on-crest -3.0 d	g 📫 5.0 deg 省	13.6 deg 【	0.0 deg 2	0.0 deg 📑	0.0 deg 2	-0.620	2.290	Screen ?
	12:23.01 12.		12:32:21 12: Mar.	12.41.14 12. Mar. A	12.40.04 12. 141. 4	08.33.51 22. FED.	0.010 1	6.604 8	nore

Commissioning of the European XFEL Injector

XFEL Third harmonic module AH1 (INFN, Milano)

 16 February 2016 : Back on beam
 Moved to -180° (wrt on-crest), calibration with beam energy

> For details on SC modules see D.Reschke's talk on Thursday THYB01 on 'Performance of Superconducting Cavities for the European XFEL',

1700 1680

IPAC 20N.Solyak는 광역시 (Busan), May 10* 2018 Frank Brinker

LCLS-II reqs.(PRD and FRD)

SCRF 3.9 GHz Cryomodule LCLSII-4.1-PR-0097-R2

Tuble 1. Main 5.5 Griz Gryoniodale and Cavity Farameters.							
	Nominal	Min	Max				
Number of CMs	2	-	-				
Number of Cavities per CM	8	-	-				
Number of Active Cavities	14		16				
Operating Temperature	2 °K	-	-				
Cavity Average <i>Q</i> ₀ and Min Value	2.0×10 ⁹	1.5×10^{9}	-				
Average Operating Gradient with 14 Cavities	13.4 MV/m	-	14.9 MV/m				
On Crest, 14 Cavity Voltage	64.7 MV	-	72.0 MV				
Nominal Beam to RF Phase	-150°	- 90°	-180°				
Active Cavity Length (L)	0.346 m	-	-				
Cavity R/Q	750 Ω	-	-				
Fundamental Mode Coupler Qext (Fixed)	2.7×10 ⁷						

Table 1 Main 3.9 GHz Cryomodule and Cavity Parameters

Table 2. Alignment Tolerances for the 3.9 GHz Cryomodules

Misalignment	RMS error	unit
Cavity X,Y misalignments w.r.t. CM	0.5	mm
Cryomodule X,Y misalignments w.r.t. Linac	0.3	mm
Cavity Z misalignments w.r.t. CM	2	mm
Cryomodule Z misalignments w.r.t. Linac	2	mm
Cavity tilt misalignments	0.5	mrad
Cryomodule tilt misalignments	0.1	mrad
Cavity roll misalignments	10	mrad
Cryomodule roll	2	mrad

Table 3. Tuning/stability requirements

Parameter	Nominal	Min Max	Units
Coarse (slow) tuner range	750		kHz
Fine (fast) tuner range	~1		kHz
HOM damped Q value (monopole and dipole)	≤10 ⁶		
Lorentz detuning	≤0.6		Hz/(MV/m) ²
Peak detune (with piezo tuner control)	30		Hz
Required cavity field amplitude stability [†]	0.01		% (rms)
Required cavity field phase stability [†]	0.01		deg (rms)
Required cavity field amplitude stability [†] Required cavity field phase stability [†]	30 0.01 0.01		Hz % (rms) deg (rms)

- Two CMs; 8 cavity / each
- 9 Cu plated bellows
- Coupler orientation as per XFEL
- ~150 W heat load/cryomodule (2K)
- BPM at downstream end (1.3GHz type)
- No magnet

Cavity gradient and Q0 requirements (recent data from XFEL cavity production)

- At 2K the all cavities have Qo in range ~(2-3)·10⁹ (except 2)
- No field slope up-to ~17 MV/m; Quench at 20-23 MV/m, VTS
- No Q degradation after welding to HV

Risk: LCLS-II cavity (cw) requirements more stringent than XFEL (pulse) !!! → Require Prototyping and Testing

SLAC

Effect of large field asymmetry and cavity orientation

Cavity/coupler design issues and proposed modifications for LCLS-II CW operation

- Cavity, bellows and Helium vessel
- HOM coupler
- Power Coupler
- Blade-Tuner with piezo

Operating Mode Parameters	XFEL	LCLS-II
Frequency, [GHz]	3.9	3.9
Stored Energy, [J]	1	1
R /Q, [Ω]	746	751
Effective Length, [m]	0.346	0.346
Maximum Electric Field on Axis, [MV/m]	25.4	25.3
Accelerating Gradient, [MV/m]	12.36	12.40
Normalized Surface Electric Field	2.25	2.24
Normalized Surface Magnetic Field, [mT/MV/m]	4.90	4.88

Table 1 Parameters of operating mode of the 3.9 GHz cavity

Cavity drawings: FLASH → XFEL → LCLS-II

LCLS-II 3.9 GHz cavity design

- INFN = modified FNAL design of the cavity for XFEL project. Modifications are done to simplify/improve production (Zenon) and tuning. Drawings and 3D models are available (thanks INFN team)
- CW operation in LCLS-II is more severe regime for the cavity. Some minor modifications are needed to reduce risks and eliminate tuning and heating problems.

Proposed modifications in cavity RF design.

- Issue #1: Frequency of lowest dipole mode trapped in coupler end of the cavity is too close to operating mode frequency, 3.9 GHz. As a result the tuning of notch frequency is difficult and 3.9 GHz frequency power leak is significant.
 Solution: Move away frequency of this mode Modification: Reduce beam pipe and bellow diameter from 40 to 38mm.
- Issue #2 : Overheating of the HOM antenna (quench ~20MV/m at cw/VTS) Modification: Increase length of bump
- *Issue: Heating of bellow between cavities*

Modification: reduce bellow ID from 42 to 38mm

Reduce beam pipe diameter from 40mm to 38mm.

In current design lowest mode is closer (min ~10-20 MHz vs. 100MHz in simul.) to operat. mode Lowest dipole mode frequency shifted by **100 MHz** up away from operating mode frequency.

Modification of HOM coupler

- Reduce penetration of antenna inside HOM to reduce heating → F-part modification
- Increase wall thickness on the top of HOM can to prevent cracks and vacuum leak
- To modify length of HOM feedthrough (choice of feedthrough design: Fermilab vs. XFEL)

SLAO

HOM F-part modification to reduce antenna heating

SLAC

Reduce penetration to beam pipe. Increase length of bump in F-part

A. Lunin/khabiboulline

- Current design HOM antenna quenches at ~20 MV/m in VTS. Expected that quench limit will even lower in CW regime at HTS and CM.
- RF power dissipation on HOM antenna reduced by factor of 5.4 after modification

HOMs Resonant Losses in the 3.9GHz LCLS-II cavity (run #1)

N.S. NOV.20,2015

HOM can thickness increase from 1.0 mm to 1.3 mm.

Thickness of hat is a concern:

- Was broken when h=1mm (FLASH).
- XFEL design has thickness of 1.15 mm \rightarrow one prototype cavity has a leak.
- Proposal to have 1.3mm.

Knob pulled up by 0.1 mm

SLAC

Conclusion: 1.3mm is acceptable thickness of can wall

Notch filter tuning requirements

Passband of the 3.9 GHz notch filter (left) and corresponding power radiated through HOM coupler at nominal accelerating gradient (right)

For 1.3 GHz HOM accuracy for notch filter frequency ~0.5MHz

SLAC

HOM and pick-up feedthrough:

3.9 GHz: Power removed by HOM coupler

- Median P < 3 W (Q=2e5)
- Prob.10⁻² (in 1/100 cavities) to have P > 10 W (Q=1e7)

A. Sukhanov

SLAC

- Simulation model includes copper plated bellows between cavities
- HOM frequencies have random distribution ~ 1MHz rms
- Max values of R/Q for each mode is used (vs. cavity to cavity distance) overest.
- Q_{HOM} < 10⁶ for most dangerous modes (Pmax < 7W, prob. 10⁻² per 2 HOMs)

HOM antenna heating issues

- Maximum power flux to HOM coupler up to 4W:
 - ✓ < 0.5 W leakage from operating mode</p>
 - ✓ Max power flux to 2K is 0.1W (from power dissipated in cable)
- Part of this will be dissipated in cable (0.6dB/m) and will heat HOM antenna.
- Heat removal from feedthrough (2K) and from the cable intercepts (5K and 50K) is essential part of design.
- Choice of cable and specs is part of current activity. Use the same cables as in 1.3GHz CM, but ~1m shorter.

Beamline components heating: wakes

Gaps between flanges Gaps between flanges Extra-bellow

> Sigma: 0.001000 m Loss factor: 151,637020 V/pC

1.25 2.50 3.75

0,00

-2.50 -1.25

Bunch length (sigma)	1mm	2
8x (Cavities + bellow)	135.5 V/pC	
CM (8cav/9bellow/gaps)	151.64 V/pC	

	Power Deposition, [W]						
Components	A (base	line)	В				
in 2 CM's	No HOM, PC	HOM PC	HOM PC				
BLA (1 or 2)	16.2	13.5	10.5				
SS tube 2.5m	1.65	1.4	2.2				
Bellows (17)	0.36	0.3	0.4				
Gate Valve (4)	0.6	0.45	0.7				
Spool (2)	0.02	0.02	0.03				
HOMC (32)	0	0.5	0.75				
FPC (16)	0	2.7	4.1				

SLAC

Wake power (300 μ A; σ =1mm) is **13.65 W** per CM, and only **9.5 W** above beam pipe cut-off frequency

Total power in 2 CMs ~19 W₂₀

Heating of bellows from operating mode RF

Table 2 Operating mode RF losses in the End Group at 14.9 MV/m gradient

		RF Loss, [mW]			
End Group Component	G-Factor	Copper	Stainless Steel		
		(RRR=15)	(316LN)		
Bellows Body (Upstream)	2.1x10 ¹¹	0.9	18		
Bellows Body (Downstream)	1.4x10 ¹¹	1.4	28		
Bellows Flange (Upstream)	9.2x10 ¹¹	0.2	5		
Bellows Flange (Downstream)	5.6x10 ¹¹	0.3	7		
HOM antenna (XFEL)	3.2x10 ⁸	-	-		
HOM antenna (LCLS-II)	1.7x10 ⁹	-	-		

SLAC

Chimney Power Limit

Chimney the heat load limit is at least 30 W (ID= 60.2 mm (short) \rightarrow 73mm (long part))

Cavity Mechanical Resonances (Stiffness of the Tuner = 40 kN/mm)

Transverse modes

218.9 Hz

865.7 Hz

Т#6

I. Gonin

Dressed Cavity LFD and dF/dP

Modification of 3.9 GHz power coupler for LCLS-II CW operation

Warm inner

part and WG

Warm outer part

- Coupler was designed for pulse operation (P=50kW, DF=2%).
- LCLS-II requirements: P_{max}=2kW cw; quas TW regime:
 - W/o modification inner conductor of warm part will be overheated up to 1000 K.
 - Proposed modifications:
 - Shorter antenna (QL~2.7e7 vs. 1.5e6)
 - Increase thickness of copper plating on inner/conductor from 30 μm to 120 μm
 - Reduce length of 2 inner bellows in inner conductor from 20 to 15 convolutions.
 - N.Solyak Increase thickness of ceramics in cold window to move parasitic mode away. 25

COUPLER THERMAL ANALYSIS

For solving the inner conductor overheating problem we propose to reduce the length of two inner bellows from 20 to 15 convolutions and to increase the thickness of a copper plating on the inner conductor from 30 to 120 microns.

Losses (W) at 5K and 50K

SLAC

SS Inner Conductor	T _{max} K	Losses @50K	Losses @5K
30 µm plating	1000	9.2	0.8
100 μm plating	507	9.3	0.8
150 μm plating	427	9.4	0.8

Assumptions

- Pin=2kW TW,
- \bullet 10 μm on outer,
- RRR=50; ASE,
- 10% roughness
- ε=9.8, tan=3e-4,

Main coupler antenna configuration

SLAC

Nominal power coupler antenna positions in the 3.9 GHz cavity for XFEL (left) and LCLS-II (right); QL=2.5e7

Trapped modes in cold ceramic window

Set-up for ceramic measurement. ϵ =9.71; tan δ =3.6E-4 (averaged over 5 modes) The inner and outer diameters of ceramic changed symmetrically by 0.25 mm each, which shifts down by 33 MHz the frequency of nearest parasitic mode and, thus, secures of ~50 MHz isolation from the operating mode. (sensitivity of parasitic mode frequencies vs. ceramic radius is ± 65.6 MHz/mm)

COUPLER MECHANICAL DESIGN

SLAC

COMSOL solid model and mechanical boundary conditions.

Solid model of 15 convolutions stainless steel bellows with 120 μm copper plating.

	MPa/mm
Inner conductor, transverse,	38
Outer conductor, transverse,	45
Inner conductor, longitudinal	253
Outer conductor, longitudinal	98

Summary of stresses in 15 convolutions bellows

Typically copper bellow endurance limit for infinite cycles is from 83 to 166 MPa or 300 MPa for a low cycle fatigue strength CPI feedback)

Von Misses stresses for 0.5 mm longitudinal deformations of each bellows.

Tuner SUMMARY/STATUS

- Use XFEL 3.9GHz slim blade tuner (INFN) with minor modifications to meet LCLS-II requirements.
- Modification introduced:
 - #1 -adding fine/fast piezo tuner
 - #2 replacement of the Sanyo/HD actuator on Phytron electromechanical actuator.

Note: Piezo-capsule and Phytron actuator selected for 1.3GHz tuner. Both active components passed several lifetime and rad. hardness tests

INFN slim blade tuner modifications – adding Fine/Fast (piezo) tuner

Two PI piezo-capsules (4 piezo-stacks). Will deliver more than 10kHz. Even one piezo can deliver required fine tuning stroke >1kHz.

Yu.Pischalnikov, SRF Cavity Tuner

BPM and HOM absorber

Concept: Use 1.3GHz beam line components (ID=78mm) in transition between cavity string:

- BPM,
- Gate-valve,
- Beamline HOM absorber (~10 W)

SLAC

Conclusion

- Design is completed and Technology of all components exist (based on FNAL/XFEL/INFN).
- To meet LCLS-II requirements cavity, coupler, HV and tuner designs are modified to reduce risks and improve performance at cw operation.
- Simulations and studies for the dressed cavity and beamline components are done to prove proposed modifications and predict performance in LCLS-II cryostat.
- Prototypes of Cavity and Auxiliaries (Tuner, main coupler, magnetic shielding, feedthroughs,...) will be tested in HTS (DV) before major procurement starts.

SLAC

Thanks:

T.Khabiboulline, I.Gonin, A.Lunin, S.Kazakov, R.Stanek, C.Ginzburg, E.Harms, H.Edwards, C.Grimm, M.Foley, Y.Pischalnikov, T.Arkan, A.Rowe, A.Grassellino, G.Wu, O.Prokofiev, J.Ozelis, A.Saini, J.Kaluzny, S.Yakovlev, M.Hasan, T.Peterson, Y.Orlov, Y.He, E. Borissov, ...

Back-up slides

LCLS-II 3.9GHz Cryomodule, (F10014857 in Team Center)

- 8 3.9GHz cavities
- Power couplers from both sides
- 2-coldmass supports
- Interconnection sliding bellow
- 38" OD vacuum vessel pipe
- One thermo shields:50K
- 5K intercept

LCLS-II. 3.9GHz Cavity String (F10014812)

TM₀₁₀ Cavity general parameters

	Parameter List for 3.9 GHz cavity:			
	A stive L on oth	0.246 m		
	Active Length	0.340 m		
	Gradient	14 MV/m		
	Phase	-179 deg		
	R/Q	750 <mark>5 Ω</mark>		
	$\mathrm{E}_{\mathrm{peak}}/\mathrm{E}_{\mathrm{acc}}$	2.26		
	B _{peak} (E _{acc} =14 MV/m)	68 mT		
	Qext	9.5·10 ⁵		
	BBU threshold, Q	<1.e+5		
 Decreased surface fields in end cells Begular cells 	Total energy	20 MeV		
 Regular cells -30mm ins diameter End-cells iris from the tube side increased up to 40mm 	Beam current	9 mA		
for better coupling with the power coupler Two HOM couplers are mounted in both ends	Forward Power	11.5 kW		
 Ports for power coupler and pick-up antenna 	Power in Coupler	45 kW		

- Ports for power coupler and pick-up antenna
- 2.8 mm bulk niobium

Comparison 3.9 GHz vs. 1.3 GHz:

Iris Aperture: 30mm vs. 70mm (ratio 2.34) E_p/E_{acc} ; 2.26 vs. 2.0 (13% higher) H_p/E_{acc}(mT/MV/m) 4.86 vs. 4.26 (14% higher) R/Q (Ohm) 750 vs. 1000 (f²) BCS resistance ratio (9 times higher)

Vendor	Times Microwave			Huber+Suhner				Gore Type 42
Cable Type	TFlex- 401	TFlex-401t	SFT-304	32022	32039	SF229	3288LM (SF329)	Gore Type 42
Inner Cond OD [in]	0.0641	0.062	0.062	0.0359	0.06	?	?	0.089
Outer Cond ID [in]	0.208	0.185	0.185	0.106	0.191	?	?	0.196
Outer Cond OD [in]	0.249	0.227	0.227	0.109	0.20	?	?	0.225
Cable OD [in]	0.27	0.250	0.250	0.144	0.250	0.20	0.20	0.29
Material of Conductor	CuAg	CuAg	CuAg	CuAg	CuAg	CuAg	AlCuAg	CuAg
Dielectric	PTFE (ε _r =2.04)	ePTFE	ePTFE	Microporou s PTFE	Extruded TFE	Low density PTFE	Microporou s PTFE	ePTFE (ε _r =1.4)
Velocity %	69.5	69.5	76	76.3	70.3	82	82	
Attenuation [dB/m] at 1 GHz	0.26	0.22	0.22	17dB/100ft at 2GHz	12dB/100ft at 2GHz	0.18	0.18	0.3
Outer Braid	CuAg	CuAg	CuAg+ Polymide/ Al+CuAg	CuAg+ Polymide/Al +SS	CuAg+ Polymide/ Al+SS	Polymide/Al +CuAg	Polymide/Al +AlCuAg	CuAg+ Mechanical Shield
Jacket Material	FEP	TEFZEL 750	FEP	FEP	FEP	FEP	ECTFE	TEFZEL
Temperature Rating [C]	-65 to +125	-55 to +200	-55 to +200	-55 to +200	-55 to +200	-55 to +125	-65 to +165	-100 to 150
Shielding	>100 dB	>100 dB	>110 dB	>110 dB	>110 dB	>90 dB	>90 dB	>110 dB
Radiation Resistance [Rad]	1e5	3e7	1e5	1e5	1e5	1e5	2e8	1e8
Material of Connectors	Brass	Brass	Brass	Brass	Brass	Brass	Brass	Be Cu
Price of 3m long assemblies(min is 250)	\$147	\$175	\$157	\$146	\$192	\$266	\$341	\$756

Lead Intercepted Power (3.9 GHz)

Narrow Leads

Power Flow

[W]	2 K	5K	50K	300K
0	6.30	189.88	287.86	-484.04
1	18.06	217.86	358.44	-394.68
2	29.84	246.19	435.51	-298.46
3	41.63	274.95	520.27	-194.23
4	53.49	304.20	614.21	-80.58
5	65.44	334.01	719.21	44.26
6	77.43	364.58	837.66	182.56
7	89.46	396.08	972.68	337.22
8	101.50	428.79	1128.35	512.10
9	113.61	462.98	1310.21	712.38
10	125.80	499.07	1525.91	945.19

Wide Leads

Power	2 K			300K	
Flow[W]	[mW]	5K [mW]	50K [mW]	[mw]	
0	9.27	164.76	242.83	-416.87	
1	21.91	193.01	313.60	-326.02	
2	34.61	221.87	393.03	-226.41	
3	47.43	251.44	483.14	-116.22	
4	60.39	281.94	586.51	6.86	
5	73.47	313.74	706.51	145.86	
6	86.67	347.22	847.86	304.90	
7	100.05	383.02	1017.10	489.75	
8	113.67	422.00	1223.63	708 57	
9	127.78	465.89	1481.52	973.22	
10	142.70	517.64	1812.94	1301.92	

Thermal simulation for HOM cable (TFlex401)

P_{antenna}= 9uW (140mT with modified design, 63 mT with original design)

Radiation Resistance of DuPont Fluoroplastics

Conclusion

- New antenna design has better thermal performance
- Preliminary analysis shows that the TFlex-401t/Huber-SF329 cable used for the 1.3GHz cryo-module will work for up to 8W power flow out of the HOM ports for the 3.9GHz cryomodule
- Wide Leads are critically needed

TFlex 401 cable after 500 MRad γ-radiation in Sandia (7 days)

Y.Pischalnikov/T.Khabiboulline/M.Hasan