

Detector development at CERN

Inaki Ortega on behalf of BE-BI-EA section

1st Joint Beam Instrumentation group for DUNE-SP and DP

Outline:

- 1- Introduction: scintillating fibres, photodetectors, electronics
- 2- Prototype with SiPM
- 3- EHN1 extension monitor design (neutrino platform)

6/1/2016

1- Introduction: scintillating fibres

They are a mix between scintillators and optical fibres

Cladding Thickness²: T=2%(To)+2%(Ti) =4% of D

Numerical Aperture: NA=0.72 Trapping Efficiency: 5.4%

- Light yield ~8000 photons/MeV deposited
- Fast rising and decay times: ~1-3 ns
- Wavelength emission peak: ~420 nm (blue)
- Long attenuation length for blue photons: ~4 m
- Long X₀: low perturbation of the beam
- Radiation damage from kGy absorbed doses

Study of x/X_0

Detector	x/X ₀ (%)
Multi-wire analogue chamber	0.34
Delay Wire Chamber	0.25
SciFi 1 mm (2 layers: X & Y)	0.47
SciFi 0.5 mm (2 layers: X & Y)	0.24

10/03 Archamps

Silicon photomultipliers: matrix of avalanche photodiodes connected in parallel

Advantages:

- High gain: 10⁶
- High detection efficiency: 40% at 450 nm
- Fast rise time: ~1ns
- Small size
- Low voltage
- Insensitive to magnetic fields
- New technology: further development expected
- Potentially cheap

Drawbacks:

- High dark count rate at room temperature: 100kHz/mm²
- Work better in low temperatures

Multi-Anode PMT: matrix of PMT sharing a common cathode.

Advantages:

High gain: 10⁶

High quantum efficiency: ~40% at 420 nm

Fast rise time: ~1ns

Short pulse signal: ~15 ns

Low dark count rate: few Hz

Compact size

Drawbacks:

- Gain uniformity between channels: can be a factor 3
- Cross-talk
- Sensitive to magnetic fields
- They need high voltage: 1kV

Price per channel similar to SiPM

Electronics

We have studied several ASIC for the electronics readout.

For SiPM: CITIROC, NINO or STiC For MA-PMT: MAROC or CLARO

<u>CITIROC</u>: an analogue front-end ASIC made by Omega Microelectronics (CNRS-IN2P3-Ecole Polytechnique)

- 32 channels with adjustable SiPM voltage
- Adjustable preamplifiers
- Variable slow shapers, track & hold and peak detector for charge measurement
- Variable fast shaper and discriminators for trigger
- Digital output of the trigger signals

CITIROC's Block diagram

3- Prototype with SiPM

A first prototype has been made and successfully tested in the H8 beam line of the North Area:

- Only one plane composed of 64 square fibres of 1mm thickness and no space between them → covered 64mm of the vertical profile
- Fibres Saint-Gobain BCF12, 1mm square, multi-cladding. No coating → there is cross-talk
- Used aluminium mirror on one end to increase light collection
- Read 1 every 2 fibres for simplicity on electronics acquisition → spatial resolution of 2mm
- Hamamatsu MPPC S13360-1350 as photo detector
- Used CITIROC evaluation board for electronics readout: 32 channels
- VME scaler modules for the data acquisition → only profile and intensity measurements
- Integrated in the vacuum tank of the FISC → fibres in vacuum, MPPC in air

Data taking timeline:

Beam profiles in H8

Fibres

XDWC 042 476 - XDWC02 H8A area. V Electrons 20 GeV/c 1.2E03 1.0E03 8.0E02 6000 6.0E02 5000 2.0E02 3000 Counts:1.363E04 Mean: -2.98 +/- 10.27 [mm] Spills:1. 2000-1000 Intensité 田沙约 27948

Delay wire chamber

Fibres

4- EHN1 extension monitor design (neutrino platform)

Several design scenarios. We need to fix one:

- 0.5mm or 1mm square fibres: for 0.5mm -> 400 fibres per plane -> 400 photosensor channels! (x2 the price than 1mm fibres)
- Detector layout:
 - 3 detectors with only 1 layer for the spectrometer and 1 detector with 2 layers for profile reconstruction
 - 4 detectors with 2 layers (X&Y)
 - ...

In the case with only 1 layer, a tile of 2mm of an organic scintillator could be added to trigger the fibre detector and reduce the noise.

In the case with 2 layers we could accept only events that have happened in both layers X&Y

Monitor proposal

Overall design:

- 1mm square fibres
- 2 planes X&Y: 2mm of Polystyrene per detector.
- 192 fibres per plane with no space between them -> 192mmx192mm covered area
- A mirror on one end to increase light collection
- Light read with MA-PMT
- Front-end electronics including MAROC and FPGA

We can offer a trigger to the experiment:

- Required timing?
- Timing precision?

Additionally we can offer:

- Time stamp in the events respect to the beginning of the spill with 10ns precision
- Fibre stamp

Modular design: planes easily replaceable

Thanks for listening

