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Introduction
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We would like to have fully 
functional simulation for the 
dual-phase DUNE detector 
by the end o this summer
 Requires completion of 
light readout

From DUNE GM in South Dakota



Some challenges
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TPB/ITO coated cathode

S1

S2

Electron 
drift time

PMT array

• Light simulation for dual-phase has to 
include 

• Generation of S2 in addition to S1

• Light conversion on the cathode plane

• The challenging aspect is how to populate 
PMTs with a photons produced along 
particle tracks

• The solution so far to produce a light map 
(or light library in larsoft) which defines 
visibility of a given detector voxel wrt to 
the photon detectors

• Note: time spread due to RS is not applied 
to photon arrival times in larsoft

• Size of the map can quickly become a 
challenge due to large detector volume

• Simulation of light visibility from each 
voxel, although to be done once, also 
becomes a CPU intensive task

Since we are not interested in tracing 
paths of each photon, but rather the 
end result, is it possible to find an 
effective theoretical description?  



Photon transport in diffusion media

• Actually there has been a big interest in this 
question due to its medical applications to evaluate 
light propagation in tissues (e.g., oxygen meters)

• Also in nuclear physics: neutron transport

Idea: find effective solution for particle propagation 
in scattering medium using diffusion theory 
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O2 meter(image: Wikipedia)

https://en.wikipedia.org/wiki/Pulse_oximetry#Indication


Diffusion equations

• Generally described by Fokker-Plank (FP) PDE:

𝜕

𝜕𝑡
𝑝(𝑥, 𝑡) = 𝐷

𝜕2

𝜕𝑥2
𝑝 𝑥, 𝑡 − 𝑣𝑑

𝜕

𝜕𝑥
𝑝(𝑥, 𝑡)

Where is D is constant diffusion coefficient and 𝑣𝑑 is constant drift velocity

• For 𝑣𝑑 = 0 FP PDE reduces to differential equation 
describing Brownian motion (Wiener process):

𝜕

𝜕𝑡
𝑝(𝑥, 𝑡) = 𝐷

𝜕2

𝜕𝑥2
𝑝 𝑥, 𝑡

This is the equation one needs to solve for photon 
diffusion subject to appropriate boundary conditions
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Boundary conditions

Photon are absorbed on the cathode  absorption condition for this plane 

For other sides of the TPC, the simplest assumption is that photons exiting 
TPC do not contribute in any significant way  absorption boundary would 
also be appropriate
But could also consider a quasi-reflective boundary at some point

p=0

p=0

Absorption boundary condition:

𝑝(𝑥, 𝑡)  
𝑆

= 0

Reflective boundary condition:

𝑝(𝑥, 𝑡)  
𝑆

= 𝑐𝑜𝑛𝑠𝑡


𝜕

𝜕𝑥
𝑝(𝑥, 𝑡) 𝑆 = 0
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Diffusion from a point source

𝐺 𝒓, 𝑡; 𝒓0, 𝑡0 =
1

4𝜋𝐷𝑐 𝑡 − 𝑡0
3/2

exp −
𝒓 − 𝒓0

2

4𝐷𝑐 𝑡 − 𝑡0

In unbound medium solution for diffusion equation for 
point source at 𝑟0, 𝑡0 is given by Green’s function:

Where c is the velocity of light in the medium. For LAr c = 21.7 cm/ns

𝐷 =
1

3(𝜇𝐴 + (1 − 𝑔)𝜇𝑆)
𝜇𝐴 - absorption coefficient [1/units of L]
𝜇𝑆 - scattering coefficient [1/units of L]
𝑔 – average scattering cosine
• Isotropic scattering 𝑔 = 0
• Including Ar form factors introduces some 

anisotropy for Rayleigh scattering 𝑔 = 0.025

For 𝜇𝑆 =
1

55
and 𝜇𝐴~0

𝐷 = 18.8 cm
Or cm2/ns if one multiply by 
velocity to get more familiar units 7



Unbound solution
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Time profile for source 3m away from detector

Note the extending tail is due 
to infinite boundaries  due 
to scattering photons will keep 
arriving … 



Single absorption boundary
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𝑎

True SImage S

Inf boundary

𝑥02𝑎 − 𝑥0

Solution for 𝑥 > 𝑎 is simply a difference 
between two unbound Green’s functions 
for true source 𝑥0 at and its mirror 
image at 2𝑎 − 𝑥0

𝑝 𝑥, 𝑥0, 𝑡 = 𝐺 𝑥, 𝑥0, 𝑡 − 𝐺(𝑥, 2𝑎 − 𝑥0, 𝑡)

𝐺∞

𝐺𝐵

The tail is reduced due to photons 
absorbed at the boundary

Time profile for source 
3m away from detector



Source between two absorbing planes
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Source b/w two absorption boundaries at -a and a

𝑎

True SImage S-

𝑥0 2𝑎 − 𝑥0

Image S+

Could use image source method as well, but need to also absorb image sources at 
further boundary: 
in the sketch that would be S−(−2a + 𝑥0) at boundary 𝑎 would need an image source 
at 4𝑎 + 𝑥0 and so on

Just like an image of a mirror reflection in a mirror or a screen capture of a screen 
capture on a video call

Of course each contribution becomes smaller and smaller correction  truncates the 
infinite series

-𝑎



Source reflection
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Reflection operations:
• Negative boundary at -a: -2a – x
• Positive boundary at +a:   2a – x 

Image source Add/Subtract Img Source 1 Img Source 2

1 - −𝑥′ − 2𝑎 −𝑥′ + 2𝑎

2 + 𝑥′ − 4𝑎 𝑥′ + 4𝑎

3 - −𝑥′ − 6𝑎 −𝑥′ + 6𝑎

… … … …

First few terms in the series

Subtract terms with n/2 = odd, add terms with n/2 = even



Full solution 1D
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𝜕

𝜕𝑡
𝑝(𝑥, 𝑡) = 𝐷

𝜕2

𝜕𝑥2
𝑝 𝑥, 𝑡

with absorption at x ± 𝑎

Diffusion PDE:

𝑝(𝑥, 𝑡) ∝  

𝑛=−∞

+∞

exp −
𝑥 − 𝑥′ + 4𝑛𝑎 2

4𝐷𝑡
− exp −

𝑥 + 𝑥′ + 4𝑛 − 2 𝑎 2

4𝐷𝑡



Solution for point source in 3D
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𝜕

𝜕𝑡
𝑝 = 𝐷

𝜕2

𝜕𝑥2
𝑝 +

𝜕2

𝜕𝑦2
𝑝 +

𝜕2

𝜕𝑧2
𝑝

With absorbing boundaries at 𝑥𝑏 = ±𝑤, 𝑦𝑏 = ±𝑙, 𝑧𝑏 = ±ℎ, 

Take: 𝑝 = 𝑋 𝑥, 𝑡 × 𝑌 𝑦, 𝑡 × 𝑍(𝑧, 𝑡)

 3D PDE reduces to 1D PDE for each component

𝜕𝑡𝑋 = 𝜕𝑥
2𝑋

𝜕𝑡𝑌 = 𝜕𝑦
2𝑌

𝜕𝑡𝑍 = 𝜕𝑧
2𝑍

Since 1D has been solved, we have simply to 
take a product of 1D solutions



Full solution in 3D

14

𝑝 𝒓, 𝑡; 𝒓0, 𝑡0 =
1

4𝜋𝐷 𝑡 − 𝑡0
3/2

× 𝑆𝑥 × 𝑆𝑦 × 𝑆𝑧

𝑆𝑥 =  

𝑛=−∞

+∞

exp −
𝑥 − 𝑥0 + 4𝑛𝑤 2

4𝐷(𝑡 − 𝑡0)
− exp −

𝑥 + 𝑥0 + 4𝑛 − 2 𝑤 2

4𝐷(𝑡 − 𝑡0)

𝑆𝑦 =  

𝑛=−∞

+∞

exp −
𝑦 − 𝑦0 + 4𝑛𝑙 2

4𝐷(𝑡 − 𝑡0)
− exp −

𝑦 + 𝑦0 + 4𝑛 − 2 𝑙 2

4𝐷(𝑡 − 𝑡0)

𝑆𝑧 =  

𝑛=−∞

+∞

exp −
𝑧 − 𝑧0 + 4𝑛ℎ 2

4𝐷(𝑡 − 𝑡0)
− exp −

𝑧 + 𝑧0 + 4𝑛 − 2 ℎ 2

4𝐷(𝑡 − 𝑡0)

This gives us photon concentration density in any point at any given time



Source at (0,0,0) in a 6x6x6 box 
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t = 10 ns
t = 100 ns

Infinite solution
Bounded solution

Particles have diffused 
to the walls where they 
were absorbed

t = 1000 ns



Photon flux across the surface

16

𝐽 𝒓, 𝑡; 𝒓0, 𝑡0 = −𝐷𝛻𝑝(𝒓, 𝑡; 𝒓0, 𝑡0)

Fick’s law of diffusion relates flux to the concentration density:

What is of interest to us is the so-called time of first passage 
The time photon hit a given absorptive surface
The overall integral of this distribution would give us an acceptance 
probability for this point

Note that by construction 𝑝 𝒓, 𝑡  𝑆 = 0

𝜕𝑡𝑃Ω 𝑡; 𝑟0, 𝑡0 =  

Ω

𝒅𝑨 ∙ 𝐷𝛻𝑝

The change in particle density crossing the 
surface per unit time:



Photon flux PDF at a bounding surface
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𝑝 𝒓, 𝑡; 𝒓0, 𝑡0 =
1

4𝜋𝐷 𝑡 − 𝑡0
3/2

× 𝑆𝑥 × 𝑆𝑦 × 𝑆𝑧

3D PDF in the volume:

𝐽~𝑆𝑦𝑆𝑧𝜕𝑥𝑆𝑥  𝑖 + 𝑆𝑥𝑆𝑧𝜕𝑦𝑆𝑦  𝑗 + 𝑆𝑥𝑆𝑦𝜕𝑧𝑆𝑧
 𝑘

And the Cartesian components of the flux vector are 

Since we are working with a cubical geometry the unit 

normal to each face would simply be ±  𝑖, ±  𝑗, ± 𝑘

So depending on the face the integrand 𝒅𝑨 ∙ 𝑱 reduces 
to one of a the appropriate J term  



Photon flux PDF at a bounding surface

18

Consider we are interested at surface z = -300 
(e.g., cathode plane in 6x6x6) 

𝑓 𝑥, 𝑦, 𝑡; 𝑥0, 𝑦0, 𝑧0, 𝑡0 =
1

4𝜋𝐷 𝑡 − 𝑡0
3/2

× 𝑆𝑥 × 𝑆𝑦 × 𝜕𝑧𝑆𝑧  
𝑧=−300

Independent of z now But still depend on of z0
Derivative wrt z 

evaluated at z = -300

Since we have a sum of Gaussians of the form

𝐺~ exp[−𝑠 𝑥 − 𝑥0
2] 𝜕𝑥𝐺 = −2𝑠 𝑥 − 𝑥0 𝐺



Time profiles for single “detection” 
point at the boundary
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Source at 0,0,200 Source at 0,0,0

Flux at boundary 0,0,-300
Flux at boundary 0,0,+300

Closer the source to the surface higher the overall probability
For a middle point the time distributions are identical

Flux at boundary 0,0,-300
Flux at boundary 0,0,+300



Checking normalization
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 𝑑𝑡  

Ω

𝒅𝑨 ∙ 𝐷𝛻𝑝 This gives the acceptance per 
detector face 

For a cubical boundary and the source at the center the answer 
is simply : 1/6 ≈ 1.666667

Calculation gives exactly that!

More detailed comparison can be done against MC 
simulation of photon transport



Comparison with MC
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MC 𝑙𝑠𝑐𝑎𝑡 = 55 cm
Diffusion solution 𝑙𝑠𝑐𝑎𝑡 = 45 cm

Solution follows quit well MC prediction. No normalization adjustment (in this case) 
Another point: rising tail which is earlier than the fastest arrival time of photons given the velocity

When I first made these plots I had to reduce scattering coefficient in the calculation from 1/55 cm 
to 1/45 cm (this was a symptom of a problem I will discuss next).

Time distribution for photon arrival integrated over cathode plane



Comparison cont’d
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Source point P Cath MC P Cath Calc

(0,0,-200) 0.5372 0.6147

(0,0,0) 1/6 1/6

(0,0,200) 0.0395 0.0306

(200,0,-200) 0.4082 0.4369

(200,0,0) 0.1058 0.0887

(200,0,200) 0.02419 0.0155

Photon probability at the cathode for MC has 
been computed with 100M photons tracked 

Note the discrepancy between MC transport and diffusion calculation is 
actually part of the same problem as the previous slide



Acceptance on the cathode
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Example: source at 0,0,0

Time integrated PDF on the cathode
Analytical calculation

Time integrated PDF on the cathode
Photon transport simulation

For analytical calculation was performed on 4x4cm2 grid on a cathode, so PDF 
and time integral was calculated at 25600 point
Approximate time of execution is ~30.0s  not fast enough to execute this per 
each step during actual MC transport, but this would be a brute force approach

100M photons generated



Acceptance on the cathode
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Example: source at 0,0,0

Ratio Calculation/MC View through central slice in X 

The spatial distribution is squeezed from the borders due to boundary 
absorption conditions on ±𝑥 and ±𝑦: 𝑆𝑥 → 0, 𝑆𝑦 → 0

These drive solution to zero along the cube edges

MC
Diffusion solution



Solution to the problem
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Apply so-called extended boundary 
condition, where the absorption boundary is 
displaced by some amount from the real 
detector boundary. 
Introduced by Duderstadt and Hamilton, in 
Nuclear Reactor Analysis (1976) for neutron 
diffusion analysis

From A. Kienle
Vol. 22, J. Opt. Soc. Am. A 1883 (2005)

Some of the detector surface could also act as a partial reflectors
Full solution can be found in A. Kienle Vol. 22, J. Opt. Soc. Am. A 1883 (2005)

The size of the extension depends on the 
diffusion constant D and could be tuned 
for given problem (~2xD works)



Solution with extrapolated boundary condition
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Source point (cm)
P Cath MC
𝝀𝑹𝑺 = 𝟓𝟓

P Cath Calc
𝑳𝒆𝒙𝒕 = 𝟎, 𝝀𝑹𝑺 = 𝟒𝟓

P Cath Calc
𝑳𝒆𝒙𝒕 = 𝟐. 𝟏𝟒𝟑 × 𝑫,

𝝀𝑹𝑺 = 𝟓𝟓

(0,0,-200) 0.5372 0.6147 0.5370

(0,0,0) 1/6 1/6 1/6

(0,0,200) 0.0395 0.0306 0.0396

(200,0,-200) 0.4082 0.4369 0.4083

(200,0,0) 0.1058 0.0887 0.1058

(200,0,200) 0.02419 0.0155 0.2419

The numbers for overall normalization are essentially in agreement for the same
value of Rayleigh scattering length 𝜆𝑅𝑆 = 55 cm 
Agreement could be further improved by tuning the extrapolated boundary factor, 
𝑓𝑒𝑥𝑡 = 2.143, which multiplies the diffusion coefficient to higher significant digits 

The position of the extrapolated boundary from the actual boundary is 
parametrized as 𝑳𝒆𝒙𝒕 = 𝒇𝒆𝒙𝒕 × 𝑫
For an interface between with non-scattering medium with the same index of 
refraction 𝑓𝑒𝑥𝑡 = 2.1312 (Patterson et al (Vol 28, J. Appl. Op. p2331 (1989)) quote 
this from A. Ishimaru “Wave Propagation and Scattering in Random Media”)
An empirical approach is to tune this parameter to match MC 



Comparison of spatial profiles
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Ratio MC/Calculation

200,0,-200

View through 
central slice in X 

MC
Diffusion 
solution

0,0,-200



Comparison of arrival time distribution at the cathode plane
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0,0,-200 0,0,0 0,0,200

200,0,-200 200,0,0
200,0,200

There is some discrepancy for the time distribution (especially for the source near 
the plane). Calculation could be fine tuned a little by adjusting the scattering 
length, since this is what affects the time profile the most. 

MC
Diffusion solution



Time distributions with 25ns bin
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The effect may be noticeable at level of 1ns resolution, but not significant 
for coarser 25 ns time sampling

0,0,-200 200,0,0

MC
Diffusion solution



One point about extrapolated 
boundary distance
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𝐿𝑒𝑥𝑡

Source

If the source is close to the boundary (~few mm distance) one needs to 
shrink 𝐿𝑒𝑥𝑡 to avoid contributions from the regions between real and 
extrapolated boundaries
I have not had time to investigate in detail, but some preliminary results 
showed that it may be possible to parametrize this as some variation of 
the scaling parameter as a function distance to the closest boundary

To give some numbers:
Source 1mm from boundary   𝑓𝑒𝑥𝑡 𝑓𝑒𝑥𝑡

0 ~0.8
Source 5mm from boundary   𝑓𝑒𝑥𝑡 𝑓𝑒𝑥𝑡

0 ~0.9



Possible implementation for photon propagation in 
DUNE DP detector simulation

1. Accumulate photons in some reasonably sized voxel: two counters NS and NT for singlet 
and triplet (or total N and sum of Triplet/Singlet from each step in a voxel) 

2. Once the charge particle leaves the voxel process the collected photons and the start a 
new voxel accumulator

3. Repeat …

• Processing of voxel photons
1. Calculate/get total acceptance from the voxel to the cathode plane (a scale factor to apply to 

the total number of photons produced): 𝑁𝑐𝑎𝑡ℎ = 𝑓𝑎𝑐𝑐 × (𝑁𝑆 + 𝑁𝑇)

2. Randomize times of 𝑁𝑐𝑎𝑡ℎ photons according to singlet / triplet lifetime constants

3. Draw photon positions at cathode 𝑁𝑐𝑎𝑡ℎ times  critical point is to figure out how to do this 
step efficiently

4. Use pre-calculated cathode plane acceptance map for each PMT to assign PMT acceptance 
weight ΔΩ𝑃𝑀𝑇,𝑖 for each photon 
• There is a list of PMTs for each segment of the cathode, which should be already sorted in decreasing order of detector 

acceptances (i.e., PMTs with highest acceptance for this point are first in the list)

• Then one goes through this list and draws from Poisson distribution with 𝜆 = 𝑄𝐸 × ΔΩ𝑃𝑀𝑇,𝑖 until one gets a first non-
zero number and accepts this as PE for that PMT at the time given by singlet/triplet + travel time (which could also be 
drawn randomly from the time profile generated by RS for this point)

• Processing of S2 component goes through the same steps, the only technical aspect to 
understand is at which step the electron drift time and projected position becomes available 
in LArSoft
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I think steps 1, 2, and 4 need to be done in any schemed adopted 
from light propagation



Another approach

• Perform convolution with the PMT acceptance directly similar to what is 
currently implemented in Qscan

1. Calculate total acceptance from the voxel a ith region on the cathode 
plane to get 𝑁𝑖 = 𝑓𝑎𝑐𝑐,𝑖 × (𝑁𝑆 + 𝑁𝑇)

2. Randomize times of 𝑁𝑖 photons according to singlet / triplet lifetime 
constants

3. Loop over sorted list of PMTs acceptances in each cathode region and 
assign 𝑁𝑖𝑗 photons to a given PMT according to

𝑁𝑖𝑗 =
𝑤𝑗

 𝑎𝑙𝑙 𝑃𝑀𝑇𝑠 𝑤𝑘
𝑁𝑖
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PMT acceptances in cathode plane

• The acceptance of PMTs from cathode plane points could be computed 
analytically if one is willing to ignore RS effects (not so bad since 
distance to PMTs is less than scattering length) 

• Otherwise it would be calculated with full simulation of photon 
transport 

33

Sum of all PMT weights with the 
array 50 cm below cathode plane

From Anne’s SB presentation 25/05/2016

Acceptances are computed analytically on a grid of 10x10cm2 ~ PMT radius



Sampling points on the cathode plane 
• PDF for photons on the cathode plane is 
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𝑝 𝑥, 𝑦, 𝑡 =
1

4𝜋𝐷 𝑡 − 𝑡0
3/2

𝑆𝑥𝑆𝑦𝜕𝑧𝑆𝑧

• Is  it possible to write down analytical form for p(x,y)? Otherwise one has 
to perform numeric integration over t

• Prescription:

• Calculate marginal CDF for x 

• Sample it 𝑁𝑐𝑎𝑡ℎ times to generate xi positions and then sample y from 
conditional CDF at each xi

𝐶𝐷𝐹 𝑦 𝑥𝑖 =  
−𝑙

𝑦

𝑑𝑦  
0

∞

𝑑𝑡  
𝑥𝑖−0.5Δ

𝑥𝑖+0.5Δ

𝑑𝑥 𝑝(𝑥, 𝑦, 𝑡)

𝐶𝐷𝐹 𝑥 =  
−𝑤

𝑥

𝑑𝑥  
0

∞

𝑑𝑡  
−𝑙

+𝑙

𝑑𝑦 𝑝(𝑥, 𝑦, 𝑡)

This integral is fast by 
interpolating erf tables

The speed of execution depends how many bins in x are populated, since this is what 
determines if one needs to compute new 𝐶𝐷𝐹 𝑦 𝑥𝑖



Some numbers

35

System specs
CPU: i7, 2.90GHz
RAM: 8.0GB

Source 
position

Phot to 
simulate

Exec time

0,0,-200 10740 ~6s

0,0,0 3333 ~5s

0,0,200 792 ~2s

Source: 20,000 photons ~ 2 MeV/cm deposited by MIP
Binning used to calculate CDFs at the cathode plane is 
10x10 cm2

Still too slow to perform such calculations at run-time 
for neutrino events (extended charge depositions)
On the other-hand one should optimize a size of the 
step before performing light propagation
e.g,. 1 cm would be too fine
 Looks promising



Effect of bin size for CDF calculation
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Photon light simulation
Generation with RTE solution

CDFs are calculated on a grid of 
10x10cm2, but the x,y values are 
then linearly interpolated 
between the bins

2D distribution of photon 
position at 2x2 cm2 grid

Examples:
Source 100M photons
Top: 0,0,0: ~15s exec (17M phot to map)
Middle: 0,0,-200: ~40s (54M phot to map)
Bottom: 0,0,-299: ~57s (85M phot to map) 

For a source at 1 mm above the plane 
the binning effect of the CDF becomes 
more apparent, but we are not looking 
at the position measurement with light 
(not ~tens of cm at least) 



Some improvements (maybe)

• Possible to write down analytical solution for steady-state (i.e., 
with t integrated out)
• It is not a simple expression as one need to multiply the three expansion 

series (e.g., N terms in each series  N3 terms after multiplication)

• This would give a total time integrated probability for  given point 
without need for numerical integration

• To sample time distribution interested in CDF for a given point
• Need to compute integrals for terms of the form:
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0

𝑡

𝑑𝑡
1

𝑡5
exp −

𝑟2

𝑡

There is actually a close form solution to this 
integral according to Wolfram Alpha

𝑡5 ×

𝜋𝑡 erfc
𝑟

𝑡
+ 2𝑟 exp −

𝑟2

𝑡

2𝑡3𝑟3



Better solution form?
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One could re-write solutions on p. 14 using Poisson’s summation formula as: 

𝑝 𝒓, 𝑡; 𝒓0, 𝑡0 =
1

𝑤 × 𝑙 × ℎ
× Φ𝑥 × Φ𝑦 × Φ𝑧

Φ𝑥 =  

𝑛≥1

∞

exp −
𝑛2𝜋2𝐷𝑡

4𝑤2 sin
𝑛𝜋 𝑥 − 𝑤

2𝑤
sin

𝑛𝜋 𝑥0 − 𝑤

2𝑤

And similarly for Φ𝑦 and Φ𝑧 …

The partial derivatives and the spatial integrals are still easy since it is just a sum of sin(𝑎𝑥)
and then can be computed quickly by building sin/cos lookup table

The advantage is the time dependence is factored out and the temporal integral could be 
done analytically: it is now a sum of terms  𝑑𝑡 exp(−𝑎𝑡)

Another possible advantage could be only terms which depend on source position in the 
series, sin 𝑛𝜋(𝑥0 − 𝑤)/2𝑤, need to be recomputed
The problem with periodic functions, however, is ringing in the solution due to truncation of 
higher order harmonics and this is not a trivial issue to address



Conclusions

• Diffusion equations can be solved to give a reasonable description of the 
time evolution of photon densities in homogeneous scattering medium

• It is impressive that collective behavior of the diffusing photons can be described so 
well by the theory

• Some thought is still needed to improve the execution time in order to 
consider calculating photon propagation at runtime

• It would be good to develop and effective approximation which are easy to compute 
for any point in the detector volume

• Another point to stress: some solution for light simulation has to be 
implemented soon in order to meet deadline set by DUNE FD TF report

• Two problems: most effective way to do light propagation for dual-phase detector 
and how feasible to actually do it in the larsoft framework

• Please let me know if you have other solutions / interesting ideas / 
proposals 
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